Advertisement

Communications in Mathematical Physics

, Volume 332, Issue 3, pp 1297–1343 | Cite as

On the Ginzburg–Landau Functional in the Surface Superconductivity Regime

  • M. Correggi
  • N. Rougerie
Article

Abstract

We present new estimates on the two-dimensional Ginzburg–Landau energy of a type-II superconductor in an applied magnetic field varying between the second and third critical fields. In this regime, superconductivity is restricted to a thin layer along the boundary of the sample. We provide new energy lower bounds, proving that the Ginzburg–Landau energy is determined to leading order by the minimization of a simplified 1D functional in the direction perpendicular to the boundary. Estimates relating the density of the Ginzburg–Landau order parameter to that of the 1D problem follow. In the particular case of a disc sample, a refinement of our method leads to a pointwise estimate on the Ginzburg–Landau order parameter, thereby proving a strong form of uniformity of the surface superconductivity layer, which is related to a conjecture by Xing-Bin Pan.

Keywords

Vortex Ground State Energy Neumann Boundary Condition General Domain Surface Superconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abr.
    Abrikosov A.: On the magnetic properties of superconductors of the second type. Sov. Phys. JETP 5, 1174–1182 (1957)Google Scholar
  2. Alm.
    Almog Y.: Nonlinear Surface Superconductivity in the Large \({ \kappa }\) Limit. Rev. Math. Phys. 16, 961–976 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. AH.
    Almog Y., Helffer B.: The Distribution of Surface Superconductivity along the Boundary: on a Conjecture of X.B. Pan. SIAM J. Math. Anal. 38, 1715–1732 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. BCS.
    Bardeen J., Cooper L., Schrieffer J.: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. BBH.
    Béthuel F., Brézis H., Hélein F.: Asymptotics for the Minimization of a Ginzburg–Landau Functional. Calc. Var. Partial Differ. Equ. 1, 123–148 (1993)CrossRefzbMATHGoogle Scholar
  6. BBH2.
    Béthuel, F., Brézis, H., Hélein, F.: Ginzburg–Landau vortices. In: Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser, Basel (1994)Google Scholar
  7. CPRY1.
    Correggi M., Pinsker F., Rougerie N., Yngvason J.: Critical Rotational Speeds in the Gross–Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions. J. Stat. Phys. 143, 261–305 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. CPRY2.
    Correggi M., Pinsker F., Rougerie N., Yngvason J.: Rotating Superfluids in Anharmonic Traps: From Vortex Lattices to Giant Vortices. Phys. Rev. A 84, 053614 (2011)CrossRefADSGoogle Scholar
  9. CPRY3.
    Correggi M., Pinsker F., Rougerie N., Yngvason J.: Critical Rotational Speeds for Superfluids in Homogeneous Traps. J. Math. Phys. 53, 095203 (2012)CrossRefADSMathSciNetGoogle Scholar
  10. CPRY4.
    Correggi M., Pinsker F., Rougerie N., Yngvason J.: Giant vortex phase transition in rapidly rotating trapped Bose–Einstein condensates. Eur. J. Phys. Spec. Top. 217, 183–188 (2013)CrossRefGoogle Scholar
  11. CPRY5.
    Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Vortex phases of rotating superfluids. In: Proceedings of the 21st International Laser Physics Workshop, Calgary (2012)Google Scholar
  12. CR.
    Correggi M., Rougerie N.: Inhomogeneous Vortex Patterns in Rotating Bose–Einstein Condensates. Commun. Math. Phys. 321, 817–860 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. CRY.
    Correggi M., Rougerie N., Yngvason J.: The Transition to a Giant Vortex Phase in a Fast Rotating Bose–Einstein Condensate. Commun. Math. Phys. 303, 451–508 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. FH1.
    Fournais S., Helffer B.: Energy asymptotics for type II superconductors. Calc. Var. Partial Differ. Equ. 24, 341–376 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. FH2.
    Fournais S., Helffer B.: Spectral methods in surface superconductivity. In: Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser, Basel (2010)Google Scholar
  16. FHP.
    Fournais S., Helffer B., Persson M.: Superconductivity between \({ H_{c_2} }\) and \({H_{c_3} }\). J. Spectr. Theory 1, 273–298 (2011)Google Scholar
  17. FK.
    Fournais S., Kachmar A.: Nucleation of bulk superconductivity close to critical magnetic field. Adv. Math. 226, 1213–1258 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. FHSS.
    Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic Derivation of Ginzburg–Landau Theory. J. Am. Math. Soc. 25, 667–713 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. GL.
    Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)Google Scholar
  20. Gor.
    Gor’kov, L.P.: Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. Zh. Eksp. Teor. Fiz. 36, 1918–1923 (1959). (English translation Sov. Phys. JETP 9, 1364–1367 (1959)Google Scholar
  21. Hetal.
    Hess H.F., Robinson R.B., Dynes R.C., Valles J.M. Jr., Waszczak J.V.: Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid. Phys. Rev. Lett. 62, 214 (1989)CrossRefADSGoogle Scholar
  22. Kac.
    Kachmar, A.: The Ginzburg–Landau order parameter near the second critical field. Preprint arXiv:1308.4236 (2013)
  23. Le.
    Leggett A.J.: Quantum Liquids. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  24. LM.
    Lassoued L., Mironescu P.: Ginzburg–Landau Type Energy with Discontinuous Constraint. J. Anal. Math. 77, 1–26 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  25. LL.
    Lieb E.H., Loss M.: Analysis, Graduate Studies in Mathematics, vol. 14. AMS, Providence (1997)Google Scholar
  26. LP.
    Lu K., Pan X.B.: Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity. Phys. D 127, 73–104 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. Netal.
    Ning Y.X., Song C.L., Guan Z.L., Ma X.C., Chen X., Jia J.F., Xue Q.K.: Observation of surface superconductivity and direct vortex imaging of a Pb thin island with a scanning tunneling microscope. Europhys. Lett. 85, 27004 (2009)CrossRefADSGoogle Scholar
  28. Pan.
    Pan X.B.: Surface Superconductivity in Applied Magnetic Fields above Hc2. Commun. Math. Phys. 228, 327–370 (2002)CrossRefADSzbMATHGoogle Scholar
  29. R1.
    Rougerie N.: The Giant Vortex State for a Bose–Einstein Condensate in a Rotating Anharmonic Trap: Extreme Rotation Regimes. J. Math. Pures Appl. 95, 296–347 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. R2.
    Rougerie N.: Vortex Rings in Fast Rotating Bose–Einstein Condensates. Arch. Ration. Mech. Anal. 203, 69–135 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  31. RS4.
    Reed M., Simon B.: Methods of modern mathematical physics. In: Analysis of Operators, vol. IV. Academic Press, San Diego (1975)Google Scholar
  32. SS.
    Sandier E., Serfaty S.: Vortices in the magnetic Ginzburg–Landau model. In: Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Basel (2007)Google Scholar
  33. Sig.
    Sigal, I.M.: Magnetic vortices, Abrikosov lattices and automorphic functions. Preprint arXiv:1308.5440 (2013)
  34. SJdG.
    Saint-James D., de Gennes P.G.: Onset of superconductivity in decreasing fields. Phys. Lett. 7, 306–308 (1963)Google Scholar
  35. Setal.
    Strongin M., Paskin A., Schweitzer D.G., Kammerer O.F., Craig P.P.: Surface Superconductivity in Type I and Type I Superconductors. Phys. Rev. Lett. 12, 442–444 (1964)CrossRefADSGoogle Scholar
  36. Ti.
    Tinkham M.: Introduction to Superconductivity. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di Matematica“Sapienza” Università di RomaRomeItaly
  2. 2.Université de Grenoble 1 and CNRS, LPMMCGrenoble CedexFrance

Personalised recommendations