Advertisement

Communications in Mathematical Physics

, Volume 332, Issue 3, pp 1113–1166 | Cite as

Continuity of the Lyapunov Exponents for Quasiperiodic Cocycles

  • Pedro Duarte
  • Silvius Klein
Article

Abstract

Consider the Banach manifold of real analytic linear cocycles with values in the general linear group of any dimension and base dynamics given by a Diophantine translation on the circle. We prove a precise higher dimensional Avalanche Principle and use it in an inductive scheme to show that the Lyapunov spectrum blocks associated to a gap pattern in the Lyapunov spectrum of such a cocycle are locally Hölder continuous. Moreover, we show that all Lyapunov exponents are continuous everywhere in this Banach manifold, irrespective of any gap pattern in their spectra. These results also hold for Diophantine translations on higher dimensional tori, albeit with a loss in the modulus of continuity of the Lyapunov spectrum blocks.

Keywords

Manifold Lyapunov Exponent Subharmonic Function Lyapunov Spectrum Base Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ávila, A., Jitomirskaya, S., Sadel, C.: Complex one-frequency cocycles, pp. 1–15 (2013, preprint). arXiv:1306.1605
  2. 2.
    Bocker-Neto, C., Viana, M.: Continuity of Lyapunov exponents for random 2d matrices, pp. 1–38 (2010, preprint). arXiv:1012.0872
  3. 3.
    Bourgain J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)Google Scholar
  4. 4.
    Bourgain J.: Positivity and continuity of the Lyapunov exponent for shifts on \({\mathbb{T}^d}\) with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313–355 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourgain, J., Jitomirskaya, S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108(5–6), 1203–1218 (2002). Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdaysGoogle Scholar
  6. 6.
    Duarte, P., Klein, S.: Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles, pp. 1–33 (2012, preprint). arXiv:1211.4002
  7. 7.
    Goldstein M., Schlag W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. (2) 154(1), 155–203 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jitomirskaya S., Marx C.A.: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Commun. Math. Phys. 316(1), 237–267 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
  9. 9.
    Kato T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York (1966)Google Scholar
  10. 10.
    Klein, S.: Localization for quasiperiodic Schrödinger operators with multivariable Gevrey potential functions, pp. 1–42 (2013, preprint). arXiv:1204.3086
  11. 11.
    Le Page É.: Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications. Ann. Inst. Henri Poincaré (B) 25(2), 109–142 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Oseledec V.I.: A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems. Trudy Moskov. Mat. Obšč 19, 179–210 (1968)MathSciNetGoogle Scholar
  13. 13.
    Schlag, W.: Regularity and convergence rates for the Lyapunov exponents of linear co-cycles, pp. 1–21 (2012, preprint). arXiv:1211.0648
  14. 14.
    You, J., Zhang, S.: Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycle with weak Liouville frequency. Ergod. Theory Dyn. Syst., pp. 1–14 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Matemática and CMAF, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.CMAF, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.IMARBucharestRomania

Personalised recommendations