Communications in Mathematical Physics

, Volume 328, Issue 2, pp 421–480 | Cite as

Equilibrating Effects of Boundary and Collision in Rarefied Gases



We investigate the time-asymptotic behavior for rarefied gases in the spherical domain with variable boundary temperature in \({\mathbb{R}^d,}\) d=1,2,3, under the diffuse reflection boundary condition. First, we obtain an optimal convergence rate of (1 + t)d to the steady state for free molecular flow. Next, we use this to construct the steady state solution of the Boltzmann equation for sufficiently large Knudsen number and small boundary temperature variation. We also obtain an exponential convergence to the steady state for the Boltzmann equation for small perturbation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkeryd L., Nouri A.: Boltzmann asymptotics with diffuse reflection boundary condition. Monatsh. Math. 123, 285–298 (1997)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arkeryd L.: The stationary Boltzmann equation with diffuse reflection boundary values. Istanbul Tek. Univ. Bul. 47(1-2), 209–217 (1994)MATHMathSciNetGoogle Scholar
  3. 3.
    Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Esposito R., Guo Y., Kim C., Marra R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Grad, H.: Asymptotic theory of the Boltzmann equation, II. In: Third International Symposium on Rarefied Gas Dynamics, pp. 25–59 (1962)Google Scholar
  6. 6.
    Guo Y.: Decay and continuity of the Boltzmann equation in bounded domain. Arch. Ration. Mech. Anal. 197, 713–809 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Kuo H.-W., Liu T.-P., Tsai L.-C.: Free molecular flow with boundary effect. Commun. Math. Phys. 318(2), 375–409 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kuo H.-W., Liu T.-P., Noh S.E.: Mixture lemma. Bull. Inst. Math. Acad. Sin. (N.S.) 5(1), 1–10 (2010)MATHMathSciNetGoogle Scholar
  9. 9.
    Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Comm. Pure Appl. Math. 57(12), 1543–1608 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Liu T.-P., Yu S.-H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. (N.S.) 1(1), 1–78 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Liu T.-P., Yu S.-H.: Diffusion under gravitational and boundary effects. Bull. Inst. Math. Acad. Sin. (N.S.) 3(1), 167–210 (2008)MATHMathSciNetGoogle Scholar
  12. 12.
    Liu T.-P., Yu S.-H.: Solving Boltzmann equation, part I: Green’s function. Bull. Inst. Math. Acad. Sin. (N.S.) 6(2), 115–243 (2011)MathSciNetGoogle Scholar
  13. 13.
    Sone Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  14. 14.
    Tsuji T., Aoki K., Golse F.: Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall. J. Stat. Phys. 140(3), 518–543 (2010)ADSMATHMathSciNetGoogle Scholar
  15. 15.
    Villani, C.: Hypocoercivity. Memoirs Amer. Math. Soc. 202(950) (2009)Google Scholar
  16. 16.
    Yu S.-H.: Stochastic formulation for the initial-boundary value problems of the Boltzmann equation. Arch. Ration. Mech. Anal. 192, 217–274 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of MathematicsAcademia SinicaTaipeiTaiwan
  3. 3.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations