Advertisement

Communications in Mathematical Physics

, Volume 331, Issue 3, pp 1087–1131 | Cite as

Mean–Field Evolution of Fermionic Systems

  • Niels Benedikter
  • Marcello Porta
  • Benjamin SchleinEmail author
Article

Abstract

The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ω N with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ω N . Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics.

Keywords

Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adami R., Golse R., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ammari Z., Nier F.: Mean field propagation of Wigner measures and BBGKY hierarchy for general bosonic states. J. Math. Pures Appl. (9) 95(6), 585–626 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bach V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147(3), 527–548 (1992)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bardos C., Golse F., Gottlieb A.D., Mauser N.J.: Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. (9) 82(6), 665–683 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ben Arous G., Kirkpatrick K., Schlein B.: A central limit theorem in Many–Body quantum dynamics. Commun. math. Phys. 321(2), 371–417 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Benedikter, N., de Oliveira, G., Schlein. B.: Quantitative derivation of the Gross–Pitaevskii Equation. To appear in Comm. Pure Appl. Math. (2014). arxiv:1208.0373 [math-ph]
  7. 7.
    Chen L., Oon Lee J., Schlein B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Elgart A., Erdős L., Schlein B., Yau H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetGoogle Scholar
  10. 10.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167, 515–614 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)CrossRefGoogle Scholar
  12. 12.
    Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98(4), 040404 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22, 1099–1156 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of Ginzburg–Landau theory. J. Amer. Math. Soc. 25, 667–713 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fröhlich J., Graffi S., Schwarz S.: Mean–field- and classical limit of many-body Schrödinger dynamics for bosons. Commun. Math. Phys. 271(3), 681–697 (2007)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Fröhlich J., Knowles A.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Fröhlich J., Knowles A., Schwarz S.: On the mean–field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I and II. Commun. Math. Phys. 66(1), 37–76 (1979) 68(1):45–68 (1979)Google Scholar
  19. 19.
    Graf G.M., Solovej J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6, 977–997 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Graffi S., Martinez A., Pulvirenti M.: Mean–field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Grillakis M., Machedon M.: Pair excitations and the mean field approximation of interacting bosons. I. Commun. Math. Phys. 324(2), 601–636 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281, 349–367 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hainzl C., Lenzmann E., Lewin M., Schlein B.: On Blowup for time-dependent generalized Hartree–Fock equations. Ann. Henri Poincare 11, 1023 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hainzl C., Seiringer R.: Critical temperature and energy gap in the BCS equation. Phys. Rev. B 77, 184517 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Hainzl C., Seiringer R.: Low density limit of BCS theory and Bose–Einstein condensation of fermion pairs. Lett. Math. Phys. 100(2), 119–138 (2012)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Hainzl C., Schlein B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265(3), 399–423 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Amer. J. Math. 133(1), 91–130 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Knowles A., Pickl P.: Mean–field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Lewin, M., Thành Nam, P., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. To appear in Comm. Pure Appl. Math. (2013). arxiv:1211.2778 [math-ph]
  34. 34.
    Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Pickl P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Ruijsenaars S.N.M.: On Bogoliubov transformations. II. The general case. Ann. Phys. 116, 105–134 (1978)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Seiringer, R.: (2011) The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306(2), 565–578Google Scholar
  39. 39.
    Solovej, J.P.: Many Body Quantum Mechanics. Lecture Notes. Summer (2007). Available at http://www.mathematik.uni-muenchen.de/~sorensen/Lehre/SoSe2013/MQM2/skript.pdf
  40. 40.
    Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52(3), 569–615 (1980)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Spohn H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)ADSzbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Niels Benedikter
    • 1
  • Marcello Porta
    • 1
  • Benjamin Schlein
    • 1
    Email author
  1. 1.Institute of Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations