Advertisement

Communications in Mathematical Physics

, Volume 329, Issue 2, pp 509–544 | Cite as

Product Vacua with Boundary States and the Classification of Gapped Phases

  • Sven BachmannEmail author
  • Bruno Nachtergaele
Article

Abstract

We address the question of the classification of gapped ground states in one dimension that cannot be distinguished by a local order parameter. We introduce a family of quantum spin systems on the one-dimensional chain that have a unique gapped ground state in the thermodynamic limit that is a simple product state, but which on the left and right half-infinite chains have additional zero energy edge states. The models, which we call Product Vacua with Boundary States, form phases that depend only on two integers corresponding to the number of edge states at each boundary. They can serve as representatives of equivalence classes of such gapped ground states phases and we show how the AKLT model and its SO(2J + 1)-invariant generalizations fit into this classification.

Keywords

Thermodynamic Limit Gapped Phase Smooth Path Quantum Spin System Quantum Spin Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hastings M.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69(10), 104431 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Nachtergaele B., Sims R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276(2), 437–472 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307(3), 609–627 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Affleck I., Kennedy T., Lieb E.H., Tasaki H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tu H.-H., Zhang G.-M., Xiang T.: Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states. Phys. Rev. B 78, 094404 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Bachmann S., Nachtergaele B.: Product vacua with boundary states. Phys. Rev. B 86, 035149 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Nachtergaele B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fernández-González, C., Schuch, N., Wolf, M.M., Cirac, J.I., Pérez-García, D.: Frustration free gapless Hamiltonians for matrix product states (2012) (arXiv:1210.6613)
  12. 12.
    Kitaev A.Yu.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hastings M., Wen X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72(4), 045141 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82(15), 155138 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Hastings, M.B.: Locality in quantum systems. In: Quantum Theory from Small to Large Scales, volume XCV of Ecole de physique des Houches, pp. 171–212. Oxford University Press, Oxford (2012)Google Scholar
  17. 17.
    Cirac J.I., Poilblanc D., Schuch N., Verstraete F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Schuch N., Cirac I., Perez-Garcia D.: Peps as ground states: degeneracy and topology. Ann. Phys. 325, 2153 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Wen, X.-G.: Topological orders and edge excitations in fractional quantum hall states. In: Geyer, H.B. (ed.) Field Theory, Topology and Condensed Matter Physics, volume 456 of Lecture Notes in Physics, pp. 155–176. Springer, Berlin, Heidelberg (1995)Google Scholar
  20. 20.
    Elbau P., Graf G.M.: Equality of bulk and edge hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2002). doi: 10.1007/s00220-002-0698-z ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–859 (2012)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Chen X., Gu Z.-C., Wen X.-G.: Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    den Nijs M., Rommelse K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40(7), 4709–4734 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Michalakis, S., Pytel, J.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)Google Scholar
  27. 27.
    Yarotsky D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Mathematisches Institut der Ludwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Department of MathematicsUniversity of California, DavisDavisUSA

Personalised recommendations