Advertisement

Communications in Mathematical Physics

, Volume 328, Issue 2, pp 527–544 | Cite as

Non-Abelian Tensor Multiplet Equations from Twistor Space

  • Christian Sämann
  • Martin Wolf
Article

Abstract

We establish a Penrose–Ward transform yielding a bijection between holomorphic principal 2-bundles over a twistor space and non-Abelian self-dual tensor fields on six-dimensional flat space-time. Extending the twistor space to supertwistor space, we derive sets of manifestly \({\mathcal{N} = (1, 0)}\) and \({\mathcal{N} = (2, 0)}\) supersymmetric non-Abelian constraint equations containing the tensor multiplet. We also demonstrate how this construction leads to constraint equations for non-Abelian supersymmetric self-dual strings.

Keywords

Twistor Space Principal Bundle Mill Theory Tensor Multiplet Bundle Gerbe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser, Boston (2007)Google Scholar
  2. 2.
    Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54, 403 (1996). http://www.arxiv.org/abs/dg-ga/9407015
  3. 3.
    Breen, L., Messing, W.: Differential geometry of gerbes. Adv. Math. 198, 732 (2005). http://www.arxiv.org/abs/math.AG/0106083
  4. 4.
    Aschieri, P., Cantini, L., Jurco, B.: Non-Abelian bundle gerbes, their differential geometry and gauge theory. Commun. Math. Phys. 254, 367 (2005). http://www.arxiv.org/abs/hep-th/0312154
  5. 5.
    Bartels, T.: Higher Gauge Theory I: 2-Bundles. PhD thesis, University of California, Riverside (2004). http://www.arxiv.org/abs/math.CT/0410328
  6. 6.
    Baez, J.C., Lauda, A.D.: Higher-dimensional algebra V: 2-groups. Theor. Appl. Categor. 12, 423 (2004). http://www.arxiv.org/abs/math.QA/0307200
  7. 7.
    Baez, J.C., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theor. Appl. Categor. 12, 492 (2004). http://www.arxiv.org/abs/math.QA/0307263
  8. 8.
    Nikolaus, T., Waldorf, K.: Four equivalent versions of non-Abelian gerbes. Pac. J. Math. 264, 355 (2013). http://www.arxiv.org/abs/1103.4815 Google Scholar
  9. 9.
    Baez, J.C., Huerta, J.: An invitation to higher gauge theory. Gen. Relativ. Gravit. 43, 2335 (2011). http://www.arxiv.org/abs/1003.4485
  10. 10.
    Ho, P.-M., Huang, K.-W., Matsuo, Y.: A non-Abelian self-dual gauge theory in 5+1 dimensions. JHEP 1107, 021 (2011). http://www.arxiv.org/abs/1104.4040
  11. 11.
    Samtleben, H., Sezgin, E., Wimmer, R.: (1,0) superconformal models in six dimensions. JHEP 1112, 062 (2011). http://www.arxiv.org/abs/1108.4060
  12. 12.
    Chu, C.-S.: A theory of non-Abelian tensor gauge field with non-Abelian gauge symmetry \({G \times G}\) . Nucl. Phys. B 866, 43 (2013). http://www.arxiv.org/abs/1108.5131
  13. 13.
    Chu, C.-S., Ko, S.-L.: Non-Abelian action for multiple five-branes with self-dual tensors. JHEP 1205, 028 (2012). http://www.arxiv.org/abs/1203.4224
  14. 14.
    Samtleben, H., Sezgin, E., Wimmer, R., Wulff, L.: New superconformal models in six dimensions: Gauge group and representation structure. PoS CORFU 2011, 071 (2011). http://www.arxiv.org/abs/1204.0542
  15. 15.
    Fiorenza, D., Sati, H., Schreiber, U.: Multiple M5-branes, string 2-connections, and 7d non-Abelian Chern–Simons theory. http://www.arxiv.org/abs/1201.5277
  16. 16.
    Palmer, S., Saemann, C.: M-brane models from non-Abelian gerbes. JHEP 1207, 010 (2012). http://www.arxiv.org/abs/1203.5757
  17. 17.
    Saemann, C., Wolf, M.: On twistors and conformal field theories from six dimensions. J. Math. Phys. 54, 013507 (2013). http://www.arxiv.org/abs/1111.2539 Google Scholar
  18. 18.
    Mason, L., Reid-Edwards, R., Taghavi-Chabert, A.: Conformal field theories in six-dimensional twistor space. J. Geom. Phys. 62, 2353 (2012). http://www.arxiv.org/abs/1111.2585 Google Scholar
  19. 19.
    Baston J.R., Eastwood M.G.: The Penrose Transform. Clarendon Press, Oxford (1989)zbMATHGoogle Scholar
  20. 20.
    Chatterjee, D.S.: On Gerbs. PhD thesis, Trinity College Cambridge (1998)Google Scholar
  21. 21.
    Howe, P.S., Lambert, N.D., West, P.C.: The self-dual string soliton. Nucl. Phys. B 515, 203 (1998). http://www.arxiv.org/abs/hep-th/9709014
  22. 22.
    Breen, L.: Notes on 1- and 2-gerbs. http://www.arxiv.org/abs/math/0611317
  23. 23.
    Wockel, C.: Principal 2-bundles and their gauge 2-groups. Forum Math. 23, 566 (2011). http://www.arxiv.org/abs/0803.3692
  24. 24.
    Girelli, F., Pfeiffer, H.: Higher gauge theory—differential versus integral formulation. J. Math. Phys. 45, 3949 (2004). http://www.arxiv.org/abs/hep-th/0309173 Google Scholar
  25. 25.
    Baez, J.C., Schreiber, U.: Higher gauge theory: 2-connections on 2-bundles. http://www.arxiv.org/abs/hep-th/0412325
  26. 26.
    Baez, J.C., Schreiber, U.: Higher gauge theory. In: Davydov, A. et al. (eds.) Categories in Algebra, Geometry and Mathematical Physics. Contemp. Math. 431, 7 (2007). http://www.arxiv.org/abs/math.DG/0511710
  27. 27.
    Penrose R., Rindler W.: Spinors and Space-Time. Vol. 1: Two Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  28. 28.
    Penrose R., Rindler W.: Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)CrossRefzbMATHGoogle Scholar
  29. 29.
    Hughston L., Shaw W.: Minimal curves in six dimensions. Class. Quant. Grav. 4, 869 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Ward R.S.: On self-dual gauge fields. Phys. Lett. A 61, 81 (1977)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Witten E.: An interpretation of classical Yang–Mills theory. Phys. Lett. B 77, 394 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    Saemann, C., Wimmer, R., Wolf, M.: A twistor description of six-dimensional \({\mathcal{N} = (1, 1)}\) super Yang–Mills theory. JHEP 1205, 020 (2012). http://www.arxiv.org/abs/1201.6285
  33. 33.
    Harnad J.P., Hurtubise J., Legare M., Shnider S.: Constraint equations and field equations in supersymmetric \({\mathcal{N} = 3}\) Yang–Mills theory. Nucl. Phys. B 256, 609 (1985)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Harnad J.P., Shnider S.: Constraints and field equations for ten-dimensional super Yang–Mills theory. Commun. Math. Phys. 106, 183 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Samtleben, H., Wimmer, R.: \({\mathcal{N} = 8}\) superspace constraints for three-dimensional gauge theories. JHEP 1002, 070 (2010). http://www.arxiv.org/abs/0912.1358
  36. 36.
    Samtleben, H., Wimmer, R.: \({\mathcal{N} = 6}\) superspace constraints, SUSY enhancement and monopole operators. JHEP 1010, 080 (2010). http://www.arxiv.org/abs/1008.2739
  37. 37.
    Saemann, C., Wolf, M. (Work in progress)Google Scholar
  38. 38.
    Saemann, C.: Constructing self-dual strings. Commun. Math. Phys. 305, 513 (2011). http://www.arxiv.org/abs/1007.3301 Google Scholar
  39. 39.
    Palmer, S., Saemann, C.: Constructing generalized self-dual strings. JHEP 1110, 008 (2011). http://www.arxiv.org/abs/1105.3904

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Maxwell Institute for Mathematical SciencesHeriot–Watt UniversityEdinburghUK
  2. 2.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations