Communications in Mathematical Physics

, Volume 328, Issue 2, pp 527–544 | Cite as

Non-Abelian Tensor Multiplet Equations from Twistor Space

Article

Abstract

We establish a Penrose–Ward transform yielding a bijection between holomorphic principal 2-bundles over a twistor space and non-Abelian self-dual tensor fields on six-dimensional flat space-time. Extending the twistor space to supertwistor space, we derive sets of manifestly \({\mathcal{N} = (1, 0)}\) and \({\mathcal{N} = (2, 0)}\) supersymmetric non-Abelian constraint equations containing the tensor multiplet. We also demonstrate how this construction leads to constraint equations for non-Abelian supersymmetric self-dual strings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser, Boston (2007)Google Scholar
  2. 2.
    Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54, 403 (1996). http://www.arxiv.org/abs/dg-ga/9407015
  3. 3.
    Breen, L., Messing, W.: Differential geometry of gerbes. Adv. Math. 198, 732 (2005). http://www.arxiv.org/abs/math.AG/0106083
  4. 4.
    Aschieri, P., Cantini, L., Jurco, B.: Non-Abelian bundle gerbes, their differential geometry and gauge theory. Commun. Math. Phys. 254, 367 (2005). http://www.arxiv.org/abs/hep-th/0312154
  5. 5.
    Bartels, T.: Higher Gauge Theory I: 2-Bundles. PhD thesis, University of California, Riverside (2004). http://www.arxiv.org/abs/math.CT/0410328
  6. 6.
    Baez, J.C., Lauda, A.D.: Higher-dimensional algebra V: 2-groups. Theor. Appl. Categor. 12, 423 (2004). http://www.arxiv.org/abs/math.QA/0307200
  7. 7.
    Baez, J.C., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theor. Appl. Categor. 12, 492 (2004). http://www.arxiv.org/abs/math.QA/0307263
  8. 8.
    Nikolaus, T., Waldorf, K.: Four equivalent versions of non-Abelian gerbes. Pac. J. Math. 264, 355 (2013). http://www.arxiv.org/abs/1103.4815 Google Scholar
  9. 9.
    Baez, J.C., Huerta, J.: An invitation to higher gauge theory. Gen. Relativ. Gravit. 43, 2335 (2011). http://www.arxiv.org/abs/1003.4485
  10. 10.
    Ho, P.-M., Huang, K.-W., Matsuo, Y.: A non-Abelian self-dual gauge theory in 5+1 dimensions. JHEP 1107, 021 (2011). http://www.arxiv.org/abs/1104.4040
  11. 11.
    Samtleben, H., Sezgin, E., Wimmer, R.: (1,0) superconformal models in six dimensions. JHEP 1112, 062 (2011). http://www.arxiv.org/abs/1108.4060
  12. 12.
    Chu, C.-S.: A theory of non-Abelian tensor gauge field with non-Abelian gauge symmetry \({G \times G}\) . Nucl. Phys. B 866, 43 (2013). http://www.arxiv.org/abs/1108.5131
  13. 13.
    Chu, C.-S., Ko, S.-L.: Non-Abelian action for multiple five-branes with self-dual tensors. JHEP 1205, 028 (2012). http://www.arxiv.org/abs/1203.4224
  14. 14.
    Samtleben, H., Sezgin, E., Wimmer, R., Wulff, L.: New superconformal models in six dimensions: Gauge group and representation structure. PoS CORFU 2011, 071 (2011). http://www.arxiv.org/abs/1204.0542
  15. 15.
    Fiorenza, D., Sati, H., Schreiber, U.: Multiple M5-branes, string 2-connections, and 7d non-Abelian Chern–Simons theory. http://www.arxiv.org/abs/1201.5277
  16. 16.
    Palmer, S., Saemann, C.: M-brane models from non-Abelian gerbes. JHEP 1207, 010 (2012). http://www.arxiv.org/abs/1203.5757
  17. 17.
    Saemann, C., Wolf, M.: On twistors and conformal field theories from six dimensions. J. Math. Phys. 54, 013507 (2013). http://www.arxiv.org/abs/1111.2539 Google Scholar
  18. 18.
    Mason, L., Reid-Edwards, R., Taghavi-Chabert, A.: Conformal field theories in six-dimensional twistor space. J. Geom. Phys. 62, 2353 (2012). http://www.arxiv.org/abs/1111.2585 Google Scholar
  19. 19.
    Baston J.R., Eastwood M.G.: The Penrose Transform. Clarendon Press, Oxford (1989)MATHGoogle Scholar
  20. 20.
    Chatterjee, D.S.: On Gerbs. PhD thesis, Trinity College Cambridge (1998)Google Scholar
  21. 21.
    Howe, P.S., Lambert, N.D., West, P.C.: The self-dual string soliton. Nucl. Phys. B 515, 203 (1998). http://www.arxiv.org/abs/hep-th/9709014
  22. 22.
    Breen, L.: Notes on 1- and 2-gerbs. http://www.arxiv.org/abs/math/0611317
  23. 23.
    Wockel, C.: Principal 2-bundles and their gauge 2-groups. Forum Math. 23, 566 (2011). http://www.arxiv.org/abs/0803.3692
  24. 24.
    Girelli, F., Pfeiffer, H.: Higher gauge theory—differential versus integral formulation. J. Math. Phys. 45, 3949 (2004). http://www.arxiv.org/abs/hep-th/0309173 Google Scholar
  25. 25.
    Baez, J.C., Schreiber, U.: Higher gauge theory: 2-connections on 2-bundles. http://www.arxiv.org/abs/hep-th/0412325
  26. 26.
    Baez, J.C., Schreiber, U.: Higher gauge theory. In: Davydov, A. et al. (eds.) Categories in Algebra, Geometry and Mathematical Physics. Contemp. Math. 431, 7 (2007). http://www.arxiv.org/abs/math.DG/0511710
  27. 27.
    Penrose R., Rindler W.: Spinors and Space-Time. Vol. 1: Two Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  28. 28.
    Penrose R., Rindler W.: Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)CrossRefMATHGoogle Scholar
  29. 29.
    Hughston L., Shaw W.: Minimal curves in six dimensions. Class. Quant. Grav. 4, 869 (1987)ADSCrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Ward R.S.: On self-dual gauge fields. Phys. Lett. A 61, 81 (1977)ADSCrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Witten E.: An interpretation of classical Yang–Mills theory. Phys. Lett. B 77, 394 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    Saemann, C., Wimmer, R., Wolf, M.: A twistor description of six-dimensional \({\mathcal{N} = (1, 1)}\) super Yang–Mills theory. JHEP 1205, 020 (2012). http://www.arxiv.org/abs/1201.6285
  33. 33.
    Harnad J.P., Hurtubise J., Legare M., Shnider S.: Constraint equations and field equations in supersymmetric \({\mathcal{N} = 3}\) Yang–Mills theory. Nucl. Phys. B 256, 609 (1985)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Harnad J.P., Shnider S.: Constraints and field equations for ten-dimensional super Yang–Mills theory. Commun. Math. Phys. 106, 183 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Samtleben, H., Wimmer, R.: \({\mathcal{N} = 8}\) superspace constraints for three-dimensional gauge theories. JHEP 1002, 070 (2010). http://www.arxiv.org/abs/0912.1358
  36. 36.
    Samtleben, H., Wimmer, R.: \({\mathcal{N} = 6}\) superspace constraints, SUSY enhancement and monopole operators. JHEP 1010, 080 (2010). http://www.arxiv.org/abs/1008.2739
  37. 37.
    Saemann, C., Wolf, M. (Work in progress)Google Scholar
  38. 38.
    Saemann, C.: Constructing self-dual strings. Commun. Math. Phys. 305, 513 (2011). http://www.arxiv.org/abs/1007.3301 Google Scholar
  39. 39.
    Palmer, S., Saemann, C.: Constructing generalized self-dual strings. JHEP 1110, 008 (2011). http://www.arxiv.org/abs/1105.3904

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Maxwell Institute for Mathematical SciencesHeriot–Watt UniversityEdinburghUK
  2. 2.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations