Advertisement

Communications in Mathematical Physics

, Volume 327, Issue 2, pp 433–441 | Cite as

Formal Formality of the Hypercommutative Algebras of Low Dimensional Calabi–Yau Varieties

  • Gabriel C. Drummond-ColeEmail author
Article
  • 135 Downloads

Abstract

There is a homotopy hypercommutative algebra structure on the cohomology of a Calabi–Yau variety. The truncation of this homotopy hypercommutative algebra to a strict hypercommutative algebra is well-known as a mathematical realization of the genus zero B-model. It is shown that this truncation loses no information for some cases, including all Calabi–Yau 3-folds.

Keywords

Modulus Space Internal Edge Harmonic Form Formal Unit Diagonal Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barannikov S., Kontsevich M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. 4, 201–215 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Drummond-Cole G.C., Vallette B.: The minimal model for the Batalin–Vilkovisky operad. Selecta Math. 19, 1–47 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Loday, J.-L., Vallette, B.: Algebraic operads. In: Grundlehren der mathematischen Wissenschaften, vol. 346. Springer, BerlinGoogle Scholar
  4. 4.
    Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. In: The Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 199–230. Birkhäuser, Boston (1995)Google Scholar
  5. 5.
    Getzler E.: Batalin–Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys. 159, 265–285 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Galvez-Carrillo I., Tonks A., Vallette B.: Homotopy Batalin–Vilkovisky algebras. J. Noncommut. Geom. 6, 539–602 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  8. 8.
    Merkulov S.: Strongly homotopy algebras of a Kähler manifold. Int. Math. Res. Not. 1999, 153–164 (1998)CrossRefGoogle Scholar
  9. 9.
    Park J.-S.: Semi-classical quantum fields theories and Frobenius manifolds. Lett. Math. Phys. 81, 41–59 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Geometry and PhysicsInstitute for Basic Science (IBS)PohangRepublic of Korea

Personalised recommendations