Communications in Mathematical Physics

, Volume 329, Issue 1, pp 405–434 | Cite as

Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential

Article

Abstract

Fix s > 1. Colliander et al. proved in (Invent Math 181:39–113, 2010) the existence of solutions of the cubic defocusing nonlinear Schrödinger equation in the two torus whose s-Sobolev norm undergoes arbitrarily large growth as time evolves. In this paper we generalize their result to the cubic defocusing nonlinear Schrödinger equation with a convolution potential. Moreover, we show that the speed of growth is the same as the one obtained for the cubic defocusing nonlinear Schrödinger equation in Guardia and Kaloshin (Growth of Sobolev norms in the cubic defocusing Nonlinear Schrödinger Equation. To appear in the Journal of the European Mathematical Society, 2012).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BG03.
    Bambusi, D., Grébert, B.:Forme normale pour NLS en dimension quelconque. C. R. Math. Acad. Sci. Paris. 337(6), 409–414 (2003)Google Scholar
  2. BG06.
    Bambusi D., Grébert B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. Bou93.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)Google Scholar
  4. Bou96.
    Bourgain, J.: On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Intern. Math. Res. Notices 6, 277–304 (1996)CrossRefMathSciNetGoogle Scholar
  5. Bou98.
    Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. (2) 148(2), 363–439 (1998)Google Scholar
  6. Bou00.
    Bourgain, J.: Problems in Hamiltonian PDE’s. Geom. Funct. Anal., Special Volume, Part I, pp. 32–56 (2000). GAFA 2000 (Tel Aviv, 1999)Google Scholar
  7. Bou04.
    Bourgain, J.: Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergodic Theory Dynam. Syst. 24(5), 1331–1357 (2004)Google Scholar
  8. CDKS01.
    Colliander, J.E., Delort, J.-M., Kenig, C.E., Staffilani, G.: Bilinear estimates and applications to 2D NLS. Trans. Amer. Math. Soc. 353(8), 3307–3325 (electronic), (2001)Google Scholar
  9. CF12.
    Carles, R., Faou, E.: Energy cascades for NLS on the torus. Discret. Contin. Dyn. Syst. 32(6), 2063–2077 (2012)Google Scholar
  10. CKO12.
    Colliander, J., Kwon, S., Oh, T.: A remark on normal forms and the “upside-down” I-method for periodic NLS: growth of higher Sobolev norms. J. Anal. Math. 118(1), 55–82 (2012)Google Scholar
  11. CKS+10.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181(1), 39–113 (2010)Google Scholar
  12. CW10.
    Catoire, F., Wang, W.M.: Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori. Commun. Pure Appl. Anal. 9(2), 483–491 (2010)Google Scholar
  13. EK10.
    Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)Google Scholar
  14. EM70.
    Ebin D.G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. (2) 92, 102–163 (1970)CrossRefMATHMathSciNetGoogle Scholar
  15. FG10.
    Faou, E., Grebert, B.: A Nekhoroshev type theorem for the nonlinear Schrdinger equation on the d-dimensional torus. To appear in Analysis and PDE. Preprint available at http://arxiv.org/abs/1003.4845 (2010)
  16. GG10.
    Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Sci. Éc. Norm. Supér. (4) 43(5), 761–810 (2010)Google Scholar
  17. GG12.
    Gérard P., Grellier S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5(5), 1139–1155 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. GK12.
    Guardia, M., Kaloshin, V.:Growth of Sobolev norms in the cubic defocusing Nonlinear Schrödinger Equation. To appear in the Journal of the European Mathematical Society. Preprint available at http://arxiv.org/abs/1205.5188 (2012)
  19. GL10.
    Gauckler, L., Lubich, C.:Nonlinear Schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10(2), 141–169 (2010)Google Scholar
  20. Han11.
    Hani, Z.: Global and dynamical aspects of nonlinear Schrödinger equations on compact manifolds. Ph.D. thesis UCLA (2011)Google Scholar
  21. Han12.
    Hani, Z.: Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrdinger equations. To appear in Archives for Rational Mechanics and Analysis (ARMA). Preprint available at http://arxiv.org/abs/1210.7509 (2012)
  22. Kuk97.
    Kuksin, S.B.: Oscillations in space-periodic nonlinear Schrödinger equations. Geom. Funct. Anal. 7(2), 338–363 (1997)Google Scholar
  23. Poc11.
    Pocovnicu, O.: Explicit formula for the solution of the Szegö equation on the real line and applications. Discret. Contin. Dyn. Syst. 31(3), 607–649 (2011)Google Scholar
  24. Poc13.
    Pocovnicu, O.: First and second order approximations for a nonlinear wave equation. J. Dynam. Differ. Equ. 25(2), 305–333 (2013)CrossRefMATHMathSciNetGoogle Scholar
  25. Soh11a.
    Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on S 1. Differ. Integr. Equ. 24(7–8), 653–718 (2011)Google Scholar
  26. Soh11b.
    Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on \({\mathbb{R}}\). Indiana Univ. Math. J. 60(5), 1487–1516 (2011)Google Scholar
  27. Soh12.
    Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations. Discret. Contin. Dyn. Syst. 32(10), 3733–3771 (2012)Google Scholar
  28. Sta97a.
    Staffilani, G.: On the growth of high sobolev norms of solutions for kdv and Schrödinger equations. Duke Math. J. 86(1), 109–142 (1997)Google Scholar
  29. Sta97b.
    Staffilani, G.: Quadratic forms for a 2-D semilinear Schrödinger equation. Duke Math. J. 86(1), 79–107 (1997)CrossRefMATHMathSciNetGoogle Scholar
  30. Zho08.
    Zhong, S.: The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds. J. Differ. Equ. 245(2), 359–376 (2008)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Mathématiques de JussieuUniversité Paris 7 Denis DiderotParisFrance

Personalised recommendations