Advertisement

Communications in Mathematical Physics

, Volume 327, Issue 2, pp 603–641 | Cite as

Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions

  • Sylvain CarrozzaEmail author
  • Daniele Oriti
  • Vincent Rivasseau
Article

Abstract

We tackle the issue of renormalizability for Tensorial Group Field Theories (TGFT) including gauge invariance conditions, with the rigorous tool of multi-scale analysis, to prepare the ground for applications to quantum gravity models. In the process, we define the appropriate generalization of some key QFT notions, including connectedness, locality and contraction of (high) subgraphs. We also define a new notion of Wick ordering, corresponding to the subtraction of (maximal) melonic tadpoles. We then consider the simplest examples of dynamical 4-dimensional TGFT with gauge invariance conditions for the Abelian U(1) case. We prove that they are super-renormalizable for any polynomial interaction.

Keywords

Quantum Gravity Lattice Gauge Theory Tensor Model Feynman Amplitude Spin Foam Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thiemann T.: Modern canonical quantum general relativity. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53–R152 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Rovelli C.: Quantum gravity. Cambridge University Press, Cambridge (2006)Google Scholar
  4. 4.
    Ambjorn, J., Goerlich, A., Jurkiewicz, J., Loll, R.: Nonperturbative quantum gravity. Phys. Rep. 519, 127–210 (2012). arXiv:1203.3591 [hep-th]Google Scholar
  5. 5.
    Hamber, H.: Quantum gravity on the lattice. Gen. Relativ. Gravit. 41, 817–876 (2009). arXiv:0901.0964 [gr-qc]
  6. 6.
    Williams, R.M.: Recent progress in Regge calculus. Nucl. Phys. Proc. Suppl. 57, 73–81 (1997). gr-qc/9702006Google Scholar
  7. 7.
    Seiberg, N.: Emergent spacetime. hep-th/0601234Google Scholar
  8. 8.
    Witten, E.: Quantum background independence in string theory. hep-th/9306122 [hep-th]Google Scholar
  9. 9.
    Horowitz, G., Polchinski, J.: Gauge/gravity duality. In: Oriti, D. (ed.) Approaches to quantum gravity, pp. 169–186, Cambridge University Press, Cambridge (2009). gr-qc/0602037 [gr-qc]Google Scholar
  10. 10.
    Dowker, F., Sorkin, R.: A spin-statistics theorem for certain topological geons. Class. Quantum Gravity 15, 1153–1167 (1998). gr-qc/9609064Google Scholar
  11. 11.
    Anspinwall, P., Greene, B., Morrison, D.: Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory. Nucl. Phys. B 416, 414–480 (1994). hep-th/9309097Google Scholar
  12. 12.
    Banks T.: Prolegomena to a theory of bifurcating universes: a nonlocal solution to the cosmological constant problem or little lambda goes back to the future. Nucl. Phys. B 309, 493 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Coleman S.: Why there is nothing rather than something: a theory of the cosmological constant. Nucl. Phys. B 310, 643 (1988)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Giddings S., Strominger A.: Baby universe, third quantization and the cosmological constant. Nucl. Phys. B 321, 481 (1989)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    David, F.: Planar diagrams, two-dimensional lattice gravity and surface models. Nucl. Phys. B 257, 45 (1985)Google Scholar
  16. 16.
    Ginsparg, P.: Matrix models of 2d gravity. [arXiv: hep-th/9112013]
  17. 17.
    Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995). hep-th/9306153Google Scholar
  18. 18.
    Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory (TASI 1992). hep-th/9304011Google Scholar
  19. 19.
    Sorkin, R.: Ten theses on black hole entropy. Stud. Hist. Philos. Mod. Phys. 36, 291–301 (2005). hep-th/0504037 [hep-th]Google Scholar
  20. 20.
    Perez, A.: The spin foam approach to quantum gravity. Living Rev. Relativ. 16, 3 (2013). arXiv:1205.2019
  21. 21.
    Rovelli, C.: Zakopane lectures on loop gravity. PoS(QG QGS 2011) 003. arXiv:1102.3660
  22. 22.
    Oriti, D.: The group field theory approach to quantum gravity. In: Oriti, D. (ed.) Approaches to quantum gravity. Cambridge University Press, Cambridge (2009). arXiv: gr-qc/0607032
  23. 23.
    Oriti, D.: Quantum gravity as a quantum field theory of simplicial geometry. In: Fauser, B. (ed.) et al. Quantum gravity, pp. 101–126. Birkhauser, Basel (2006). gr-qc/0512103 [gr-qc]Google Scholar
  24. 24.
    Gurau, R., Ryan, J.: Colored tensor models - a review. SIGMA 8, 020 (2012). arXiv:1109.4812 [hep-th]
  25. 25.
    Oriti, D.: The microscopic dynamics of quantum space as a group field theory. In: Ellis, G., Murugan, J., Weltman, A. (eds.) Foundations of space and time. Cambridge University Press, Cambridge (2012). arXiv:1110.5606 [hep-th]
  26. 26.
    Rivasseau, V.: Quantum gravity and renormalization: the tensor track. arXiv:1112.5104 [hep-th]
  27. 27.
    Gross M.: Tensor models and simplicial quantum gravity in >2-D. Nucl. Phys. Proc. Suppl. 25A, 144–149 (1992)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A6, 1133–1146 (1991)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A6, 2613–2624 (1991)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Reisenberger, M., Rovelli, C.: Spacetime as a Feynman diagram: the connection formulation. Class. Quantum Gravity 18, 121–140 (2001). gr-qc/0002095Google Scholar
  31. 31.
    Baratin, A., Oriti, D.: Group field theory with non-commutative metric variables. Phys. Rev. Lett. 105, 221302 (2010). arXiv:1002.4723 [hep-th]Google Scholar
  32. 32.
    Baratin, A., Dittrich, B., Oriti, D., Tambornino, J.: Non-commutative flux representation for loop quantum gravity. Class. Quantum Gravity 28, 175011 (2011). arXiv:1004.3450 [hep-th]
  33. 33.
    Boulatov, D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629–1646 (1992). arXiv:hep-th/9202074 Google Scholar
  34. 34.
    Ooguri, H.: Topological lattice models in four dimensions. Mod. Phys. Lett. A7, 2799 (1992). hep-th/9205090Google Scholar
  35. 35.
    De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785 (2000). arXiv: hep-th/9907154
  36. 36.
    Perez, A., Rovelli, C.: A spin foam model without bubble divergences. Nucl. Phys. B 599, 255 (2001). arXiv: gr-qc/0006107
  37. 37.
    Freidel, L., Krasnov, K.: A new spin foam model for 4d gravity. Class. Quantum Gravity 25, 125018 (2008). arXiv: 0708.1595
  38. 38.
    Engle, J., Pereira, R., Rovelli, C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008). arXiv: 0708.1236
  39. 39.
    Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136 (2008). arXiv:0711.0146
  40. 40.
    Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010). arXiv:1008.0354 [hep-th]Google Scholar
  41. 41.
    Baratin, A., Oriti, D.: Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model. New J. Phys. 13, 125011 (2011). arXiv:1108.1178 [gr-qc]
  42. 42.
    Baratin, A., Oriti, D.: Group field theory and simplicial gravity path integrals: a model for Holst-Plebanski gravity. Phys. Rev. D85, 044003 (2012). arXiv:1111.5842 [hep-th]
  43. 43.
    Oriti, D.: Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity. Proceedings of Science PoS(QG-Ph)030. arXiv:0710.3276
  44. 44.
    Sindoni, L.: Gravity as an emergent phenomenon: a GFT perspective. arXiv:1105.5687 [gr-qc]
  45. 45.
    Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. hep-th/0611197Google Scholar
  46. 46.
    Konopka, T., Markopoulou, F., Severini, S.: Quantum graphity: a model of emergent locality. Phys. Rev. D77, 104029 (2008). arXiv:0801.0861 [hep-th]
  47. 47.
    Ben Geloun, J.: Classical group field theory. J. Math. Phys. 53, 022901 (2012). arXiv:1107.3122 [hep-th]Google Scholar
  48. 48.
    Baratin, A., Girelli, F., Oriti, D.: Diffeomorphisms in group field theories. Phys. Rev. D 83, 104051 (2011). arXiv:1101.0590 [hep-th]
  49. 49.
    Gurau, R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B852, 592–614 (2011). arXiv:1105.6072 [hep-th]
  50. 50.
    Oriti, D., Sindoni, L.: Towards classical geometrodynamics from group field theory hydrodynamics. New J. Phys. 13, 025006 (2011). arXiv:1010.5149 [gr-qc]
  51. 51.
    Girelli, F., Livine, E., Oriti, D.: 4d Deformed special relativity from group field theories. Phys. Rev. D81, 024015 (2010). arXiv: 0903.3475 [gr-qc]
  52. 52.
    Livine, E., Oriti, D., Ryan, J.: Effective Hamiltonian constraint from group field theory. Class. Quantum Gravity 28, 245010 (2011). arXiv:1104.5509 [gr-qc]
  53. 53.
    Calcagni, G., Gielen, S., Oriti, D.: Group field cosmology: a cosmological field theory of quantum geometry. Class. Quantum Gravity 29, 105005 (2012). arXiv:1201.4151 [gr-qc]
  54. 54.
    Bahr, B., Dittrich, B.: Improved and perfect actions in discrete gravity. Phys. Rev. D80, 124030 (2009). arXiv:0907.4323 [gr-qc]
  55. 55.
    Dittrich, B., Eckert, F., Martin-Benito, M.: Coarse graining methods for spin net and spin foam models. arXiv:1109.4927 [gr-qc]
  56. 56.
    Freidel, L., Gurau, R., Oriti, D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009). arXiv:0905.3772
  57. 57.
    Rivasseau, V.: Towards renormalizing group field theory. PoS CNCFG2010 (2010) 004. arXiv:1103.1900 [gr-qc]
  58. 58.
    Ben Geloun, J., Krajewski, T., Magnen, J., Rivasseau, V.: Linearized group field theory and power counting theorems. Class. Quantum Gravity 27, 155012 (2010). arXiv:1002.3592 [hep-th]
  59. 59.
    Bonzom, V., Smerlak, M.: Bubble divergences from cellular cohomology. Lett. Math. Phys. 93, 295–305 (2010). arXiv:1004.5196 [gr-qc]Google Scholar
  60. 60.
    Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology. Commun. Math. Phys. 312(2), 399–426 (2012). arXiv:1008.1476 [math-ph]Google Scholar
  61. 61.
    Bonzom, V., Smerlak, M.: Bubble divergences: sorting out topology from cell structure. Ann. Henri Poincaré 13, 185–208 (2012). arXiv:1103.3961 [gr-qc]Google Scholar
  62. 62.
    Carrozza, S., Oriti, D.: Bounding bubbles: the vertex representation of 3d group field theory and the suppression of pseudo-manifolds. Phys. Rev. D 85, 044004 (2012). arXiv:1104.5158 [hep-th]
  63. 63.
    Carrozza, S., Oriti, D.: Bubbles and jackets: new scaling bounds in topological group field theories. JHEP 1206, 092 (2012). arXiv:1203.5082 [hep-th]
  64. 64.
    Crane, L., Perez, A., Rovelli, C.: A finiteness proof for the Lorentzian state sum spinfoam model for quantum general relativity. Phys. Rev. Lett. 87, 181301 (2001). gr-qc/0104057 [gr-qc]Google Scholar
  65. 65.
    Perez, A.: Finiteness of a spinfoam model for euclidean quantum general relativity. Nucl. Phys. B599, 427–434 (2001). gr-qc/0011058 [gr-qc]Google Scholar
  66. 66.
    Perini, C., Rovelli, C., Speziale, S.: Self-energy and vertex radiative corrections in LQG. Phys. Lett. B682, 78–84 (2009). arXiv:0810.1714 [gr-qc]
  67. 67.
    Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011). arXiv:0907.2582 [hep-th]Google Scholar
  68. 68.
    Ferri M., Gagliardi C.: Crystallisation moves. Pac. J. Math. 100(1), 85–103 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Vince A.: n-Graphs. Discret. Math. 72(13), 367–380 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    Vince, A.: The classification of closed surfaces using colored graphs. Graphs Comb. 9, 75–84 (1993)Google Scholar
  71. 71.
    Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D. 85, 084037 (2012). arXiv:1202.3637 [hep-th]Google Scholar
  72. 72.
    Gurau, R.: Universality for random tensors. arXiv:1111.0519 [math.PR]
  73. 73.
    Gurau, R.: The 1/N expansion of colored tensor models. Ann. Henri Poincare 12, 829 (2011). arXiv:1011.2726 [gr-qc]
  74. 74.
    Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182 [gr-qc]Google Scholar
  75. 75.
    Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré, 13(3), 399–423 (2012). arXiv:1102.5759 [gr-qc]
  76. 76.
    Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B853, 174–195 (2011). arXiv:1105.3122 [hep-th]
  77. 77.
    Bonzom, V., Gurau, R., Rivasseau, V.: The Ising model on random lattices in arbitrary dimensions. Phys. Lett. B 711, 88–96 (2012). arXiv:1108.6269 [hep-th]Google Scholar
  78. 78.
    Benedetti, D., Gurau, R.: Phase transition in dually weighted colored tensor models. Nucl. Phys. B855, 420–437 (2012). arXiv:1108.5389 [hep-th]
  79. 79.
    Oriti, D.: Generalised group field theories and quantum gravity transition amplitudes. Phys. Rev. D73, 061502 (2006). gr-qc/0512069Google Scholar
  80. 80.
    Oriti, D.: Group field theory and simplicial quantum gravity. Class. Quantum Gravity 27, 145017 (2010). arXiv:0902.3903 [gr-qc]
  81. 81.
    Oriti, D., Tlas, T.: Encoding simplicial quantum geometry in group field theories. Class. Quantum Gravity 27, 135018 (2010). arXiv:0912.1546 [gr-qc]
  82. 82.
    Ben Geloun, J., Bonzom, V.: Radiative corrections in the Boulatov-Ooguri tensor model: the 2-point function. Int. J. Theor. Phys. 50, 2819 (2011). arXiv:1101.4294 [hep-th]Google Scholar
  83. 83.
    Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318(1), 69–109 (2013). arXiv:1111.4997 [hep-th]Google Scholar
  84. 84.
    Ben Geloun, J., Ousmane Samary, D.: 3D tensor field theory: renormalization and one-loop β-functions. Ann. Henri Poincaré 14(6), 1599–1642 (2013). arXiv:1201.0176 [hep-th]
  85. 85.
    Ben Geloun, J., Livine, E.: Some classes of renormalizable tensor models. J. Math. Phys. 54, 082303 (2013). arXiv:1207.0416 [hep-th]Google Scholar
  86. 86.
    Ben Geloun, J.: Two and four-loop β-functions of rank 4 renormalizable tensor field theories. Class. Quantum Gravity 29, 235011 (2012). arXiv:1205.5513 [hep-th]
  87. 87.
    Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). arXiv:0706.1224 [hep-th]
  88. 88.
    Magnen, J., Rivasseau, V.: Constructive φ4 field theory without tears. Ann. Henri Poincare 9, 403 (2008). arXiv:0706.2457 [math-ph]
  89. 89.
    Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behaviour of three-dimensional group field theory. Class. Quantum Gravity 26, 185012 (2009). arXiv:0906.5477 [hep-th]
  90. 90.
    Rivasseau, V., Wang, Z.: Loop vertex expansion for Phi2k theory in zero dimension. J. Math. Phys. 51, 092304 (2010). arXiv:1003.1037 [math-ph]Google Scholar
  91. 91.
    Bonzom, V., Erbin, H.: Coupling of hard dimers to dynamical lattices via random tensors. J. Stat. Mech (2012) PO9009. arXiv:1204.3798 hep-th]
  92. 92.
    Bonzom, V., Gurau, R., Smerlak, M.: Universality in p-spin glasses with correlated disorder. J. Stat. Mech. (2013) LO2003. arXiv:1206.5539 [hep-th]
  93. 93.
    Simon B.: P(Φ)2 Euclidean quantum field theory. Princeton University Press, Princeton (1974)Google Scholar
  94. 94.
    Rivasseau V.: From perturbative to constructive renormalization. Princeton University Press, Princeton (1991)Google Scholar
  95. 95.
    Freidel, L., Louapre, David: Ponzano-Regge model revisited I: gauge fixing, observables and interacting spinning particles. Class. Quantum Gravity 21, 5685–5726 (2004). arXiv:0401076 [hep-th]
  96. 96.
    Ryan, J.: Tensor models and embedded Riemann surfaces. Phys. Rev. D85, 024010 (2012). arXiv:1104.5471 [gr-qc]
  97. 97.
    Caravelli, F.: A simple proof of orientability in colored group field theory. SpringerPlus 20 1 (1:6). arXiv:1012.4087 [math-ph]
  98. 98.
    Grosse, H., Wulkenhaar, R.: Renormalisation of φ 4-theory on noncommutative R4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). hep-th/0401128Google Scholar
  99. 99.
    Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalization of noncommutative phi 4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594 (2006). arXiv:0501036 [hep-th]Google Scholar
  100. 100.
    Rivasseau, V., Wang, Z.: Constructive renormalization for Φ42 theory with loop vertex expansion. J. Math. Phys. 53, 042302 (2012). arXiv:1104.3443 [math-ph]Google Scholar
  101. 101.
    Wang, Z.: Constructive renormalization of 2-dimensional Grosse-Wulkenhaar model. arXiv:1205.0196 [hep-th]

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvain Carrozza
    • 1
    • 2
    Email author
  • Daniele Oriti
    • 2
  • Vincent Rivasseau
    • 1
  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627Université Paris XIOrsay CedexFrance
  2. 2.Max Planck Institute for Gravitational Physics, Albert Einstein InstituteGolmGermany

Personalised recommendations