Communications in Mathematical Physics

, Volume 328, Issue 1, pp 303–326 | Cite as

Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask)

  • Eric Chitambar
  • Debbie Leung
  • Laura Mančinska
  • Maris Ozols
  • Andreas Winter


In this paper we study the subset of generalized quantum measurements on finite dimensional systems known as local operations and classical communication (LOCC). While LOCC emerges as the natural class of operations in many important quantum information tasks, its mathematical structure is complex and difficult to characterize. Here we provide a precise description of LOCC and related operational classes in terms of quantum instruments. Our formalism captures both finite round protocols as well as those that utilize an unbounded number of communication rounds. While the set of LOCC is not topologically closed, we show that finite round LOCC constitutes a compact subset of quantum operations. Additionally we show the existence of an open ball around the completely depolarizing map that consists entirely of LOCC implementable maps. Finally, we demonstrate a two-qubit map whose action can be approached arbitrarily close using LOCC, but nevertheless cannot be implemented perfectly.


State Discrimination Completely Positive Kraus Operator Bipartite Entanglement Communication Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABLS01.
    Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87(4), 040401 (2001). ( doi: 10.1103/PhysRevLett.87.040401 Google Scholar
  2. AO08.
    Anderson, E., Oi, D.K.L.: Binary search trees for generalized measurements. Phys. Rev. A 77(5), 052104 (2008). ( doi: 10.1103/PhysRevA.77.052104 Google Scholar
  3. BBC+93.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi: 10.1103/PhysRevLett.70.1895 ADSCrossRefMATHMathSciNetGoogle Scholar
  4. BBPS96.
    Bennett, C.H., Bernstein, H., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996). (arXiv:quant-ph/9511030). doi: 10.1103/PhysRevA.53.2046 Google Scholar
  5. BCH+02.
    Bruß, D., Cirac, J.I., Horodecki, P., Hulpke, F., Kraus, B., Lewenstein, M., Sanpera, A.: Reflections upon separability and distillability. J. Mod. Optics 49(8), 1399–1418 (2002). (arXiv:quant-ph/0110081). doi: 10.1080/09500340110105975 Google Scholar
  6. BDF+99.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999). (arXiv:quant-ph/9804053). doi: 10.1103/PhysRevA.59.1070 Google Scholar
  7. BDM+99.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999). (arXiv:quant-ph/9808030). doi: 10.1103/PhysRevLett.82.5385 Google Scholar
  8. BDSW96.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996). (arXiv:quant-ph/9604024). doi: 10.1103/PhysRevA.54.3824 Google Scholar
  9. BPR+00.
    Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure state entanglement. Phys. Rev. A 63(1), 012307 (2000). (arXiv:quant-ph/9908073). doi: 10.1103/PhysRevA.63.012307 Google Scholar
  10. CCL11.
    Cui, W., Chitambar, E., Lo, H.-K.: Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A 84(5), 052301 (2011). (arXiv:1106.1209). doi: 10.1103/PhysRevA.84.052301 Google Scholar
  11. CCL12.
    Chitambar E., Cui W., Lo H.-K.: Increasing entanglement monotones by separable operations. Phys. Rev. Lett. 108(24), 240504 (2012). doi: 10.1103/PhysRevLett.108.240504 ADSCrossRefGoogle Scholar
  12. CDKL01.
    Cirac, J.I., Dür, W., Kraus, B., Lewenstein, M.: Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86(3), 544–547 (2001). (arXiv:quant-ph/0007057). doi: 10.1103/PhysRevLett.86.544 Google Scholar
  13. CDS08.
    Chitambar, E., Duan, R., Shi, Y.: Tripartite entanglement transformations and tensor rank. Phys. Rev. Lett. 101(14), 140502 (2008). (arXiv:0805.2977). doi: 10.1103/PhysRevLett.101.140502 Google Scholar
  14. Che04.
    Chefles A.: Condition for unambiguous state discrimination using local operations and classical communication. Phys. Rev. A 69(5), 050307 (2004). doi: 10.1103/PhysRevA.69.050307 ADSCrossRefGoogle Scholar
  15. Chi11.
    Chitambar, E.: Local quantum transformations requiring infinite rounds of classical communication. Phys. Rev. Lett. 107(19), 190502 (2011). (arXiv:1105.3451). doi: 10.1103/PhysRevLett.107.190502 Google Scholar
  16. Cho75.
    Choi M.-D.: Completely positive linear maps on complex matrices. Liner Alg. Appl. 10(3), 285–290 (1975). doi: 10.1016/0024-3795(75)90075-0 CrossRefMATHGoogle Scholar
  17. CLMO12.
    Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323(3), 1121–1153 (2013). (arXiv:1206.5822). doi: 10.1007/s0020-013-1784-0 Google Scholar
  18. Coh07.
    Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75(5), 052313 (2007). (arXiv:quant-ph/0602026). doi: 10.1103/PhysRevA.75.052313 Google Scholar
  19. DFXY09.
    Duan, R., Feng, Y., Xin, Y., Ying, M.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55(3), 1320–1330 (2009). (arXiv:0705.0795). doi: 10.1109/TIT.2008.2011524 Google Scholar
  20. DHR02.
    Donald, M.J., Horodecki, M., Rudolph O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002). (arXiv:quant-ph/0105017). doi: 10.1063/1.1495917 Google Scholar
  21. DL70.
    Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17(3), 239–260 (1970)., doi: 10.1007/BF01647093 Google Scholar
  22. DLT02.
    DiVincenzo, D.P., Leung, D.W., Terhal Barbara M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002). (arXiv:quant-ph/0103098). doi: 10.1109/18.985948 Google Scholar
  23. DVC00.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000). (arXiv:quant-ph/0005115). doi: 10.1103/PhysRevA.62.062314 Google Scholar
  24. EW02.
    Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002). (arXiv:quant-ph/0203004). doi: 10.1103/PhysRevLett.89.097905 Google Scholar
  25. FL07.
    Fortescue, B., Lo, H.-K.: Random bipartite entanglement from W and W-like states. Phys. Rev. Lett. 98(26), 260501 (2007). (arXiv:quant-ph/0607126). doi: 10.1103/PhysRevLett.98.260501
  26. GB03.
    Gurvits, L., Barnum, H.: Separable balls around the maximally mixed multipartite quantum states. Phys. Rev. A 68(4), 042312 (2003). (arXiv:quant-ph/0302102). doi: 10.1103/PhysRevA.68.042312 Google Scholar
  27. GL03.
    Gottesman, D., Lo H.-K.: Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inf. Theory 49(2), 457–475 (2003). (arXiv:quant-ph/0105121). doi: 10.1109/TIT.2002.807289 Google Scholar
  28. HHH96.
    Horodecki, M., Horodecki, P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). (arXiv:quant-ph/9605038). doi: 10.1016/S0375-9601(96)00706-2 Google Scholar
  29. HHH98.
    Horodecki, M., Horodecki, P., Horodecki R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). (arXiv:quant-ph/9801069). doi: 10.1103/PhysRevLett.80.5239
  30. HHH00.
    Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures. Phys. Rev. Lett. 84(9), 2014–2017 (2000). (arXiv:quant-ph/9908065). doi: 10.1103/PhysRevLett.84.2014 Google Scholar
  31. Hor97.
    Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997). (arXiv:quant-ph/9703004). doi: 10.1016/S0375-9601(97)00416-7Google Scholar
  32. Hor01.
    Horodecki, M.: Entanglement measures. Quant. Inf. Comput. 1(1), 3–26 (2001).
  33. Jam72.
    Jamiołkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3(4), 275–278 (1972). doi: 10.1016/0034-4877(72)90011-0 ADSCrossRefMATHGoogle Scholar
  34. KKB11.
    Kleinmann, M., Kampermann, H., Bruß, D.: Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm. Phys. Rev. A 84(4), 042326 (2011) (arXiv:1105.5132). doi: 10.1103/PhysRevA.84.042326 Google Scholar
  35. KSV02.
    Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation, Vol. 47 of Graduate Studies in Mathematics. American Mathematical Society (2002).
  36. KT10.
    Kıntaş, S., Turgut, S.: Transformations of W-type entangled states. J. Math. Phys. 51, 092202 (2010). (arXiv:1003.2118). doi: 10.1063/1.3481573 Google Scholar
  37. KTYI07.
    Koashi, M., Takenaga, F., Yamamoto T., Imoto N.: Quantum nonlocality without entanglement in a pair of qubits. (arXiv:0709.3196v1[quant-ph]) (2007)Google Scholar
  38. LP01.
    Lo, H.-K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63(2), 022301 (2001). (arXiv:quant-ph/9707038). doi: 10.1103/PhysRevA.63.022301 Google Scholar
  39. LVvE03.
    Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quant. Inf. Comput. 3(1), 64–83 (2003). (arXiv:quant-ph/0206192)Google Scholar
  40. MP95.
    Massar S., Popescu S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74(8), 1259–1263 (1995). doi: 10.1103/PhysRevLett.74.1259 ADSCrossRefMATHMathSciNetGoogle Scholar
  41. Nie99.
    Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1999). (arXiv:quant-ph/9811053). doi: 10.1103/PhysRevLett.83.436 Google Scholar
  42. OB05.
    Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95(11), 110409 (2005). (arXiv:quant-ph/0503017). doi: 10.1103/PhysRevLett.95.110409 Google Scholar
  43. OH08.
    Owari, M., Hayashi, M.: Two-way classical communication remarkably improves local distinguishability. New J. Phys. 10(1), 013006 (2008). (arXiv:0708.3154). doi: 10.1088/1367-2630/10/1/013006
  44. PV07.
    Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7(1&2), 1–51 (2007). (arXiv:quant-ph/0504163)
  45. PW91.
    Peres A., Wootters W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66(9), 1119–1122 (1991). doi: 10.1103/PhysRevLett.66.1119 ADSCrossRefGoogle Scholar
  46. Rai97.
    Rains, E.M.: Entanglement purification via separable superoperators. (arXiv:quant-ph/ 9707002v3) (1998)Google Scholar
  47. Rai01.
    Rains, E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001). (arXiv:quant-ph/0008047). doi: 10.1109/18.959270 Google Scholar
  48. Rin04.
    De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70(2), 022309 (2004). (arXiv:quant-ph/0304027). doi: 10.1103/PhysRevA.70.022309
  49. Roc96.
    Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series. Princeton University Press (1996).
  50. TDL01.
    Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807–5810 (2001). (arXiv:quant-ph/0011042). doi: 10.1103/PhysRevLett.86.5807 Google Scholar
  51. VPRK97.
    Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997). (arXiv:quant-ph/9702027). doi: 10.1103/PhysRevLett.78.2275 Google Scholar
  52. Wat05.
    Watrous, J.: Notes on super-operator norms induced by Schatten norms. Quant. Inf. Comput. 5(1), 58–68 (2005). (arXiv:quant-ph/0411077)Google Scholar
  53. Wer89.
    Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi: 10.1103/PhysRevA.40.4277 ADSCrossRefGoogle Scholar
  54. Woo98.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998). (arXiv:quant-ph/9709029). doi: 10.1103/PhysRevLett.80.2245 Google Scholar
  55. XD08.
    Xin, Y., Duan, R.: Local distinguishability of orthogonal \({2 \otimes 3}\) pure states. Phys. Rev. A 77(1), 012315 (2008). (arXiv:0709.1651). doi: 10.1103/PhysRevA.77.012315

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric Chitambar
    • 1
    • 2
  • Debbie Leung
    • 3
  • Laura Mančinska
    • 3
  • Maris Ozols
    • 3
    • 4
  • Andreas Winter
    • 5
    • 6
    • 7
    • 8
  1. 1.Department of PhysicsSouthern Illinois UniversityCarbondaleUSA
  2. 2.The Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Department of Combinatorics and Optimization, Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  4. 4.IBM TJ Watson Research CenterYorktown HeightsUSA
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  6. 6.Física Teòrica: Informació i Fenomens QuànticsUniversitat Autònoma de BarcelonaBellaterraSpain
  7. 7.Department of MathematicsUniversity of BristolBristolUK
  8. 8.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations