Communications in Mathematical Physics

, Volume 328, Issue 1, pp 1–27 | Cite as

A Variational Perspective on Cloaking by Anomalous Localized Resonance

  • R. V. KohnEmail author
  • J. Lu
  • B. Schweizer
  • M. I. Weinstein


A body of literature has developed concerning “cloaking by anomalous localized resonance.” The mathematical heart of the matter involves the behavior of a divergence-form elliptic equation in the plane, \({{\rm div} (a(x) {\rm grad}\, u(x)) = f(x)}\). The complex-valued coefficient has a matrix-shell-core geometry, with real part equal to 1 in the matrix and the core, and −1 in the shell; one is interested in understanding the resonant behavior of the solution as the imaginary part of a(x) decreases to zero (so that ellipticity is lost). Most analytical work in this area has relied on separation of variables, and has therefore been restricted to radial geometries. We introduce a new approach based on a pair of dual variational principles, and apply it to some non-radial examples. In our examples, as in the radial setting, the spatial location of the source f plays a crucial role in determining whether or not resonance occurs.


Variational Principle Weinstein Trial Function Plasmon Wave Fourier Harmonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208(2), 667–692 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bouchitté G., Schweizer B.: Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Math. 63(4), 437–463 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bouchitté G., Schweizer B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8(3), 717–750 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bruno, O., Lintner, S.: Superlens-cloaking of small dielectric bodies in the quasistatic regime. J. Appl. Phys. 102(12), Art. No. 124502 (2007)Google Scholar
  5. 5.
    Cherkaev A.V., Gibiansky L.V.: Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys. 35(1), 127–145 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, Vol 19. Providence: AMS (2010)Google Scholar
  7. 7.
    Grieser, D.: The plasmonic eigenvalue problem (2012). arXiv:1208.3120v1[math-ph]
  8. 8.
    Milton G.W., Nicorovici N.-A.P.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 3027–3059 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Milton G.W., Nicorovici N.-A.P., McPhedran R.C.: Opaque perfect lenses. Physica B 394, 171–175 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Milton G.W., Nicorovici N.-A.P., McPhedran R.C., Podolskiy V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2064), 3999–4034 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Milton G.W., Seppecher P., Bouchitté G.: Minimization variational principles for acoustics, elastodynamics and electromagnetism in lossy inhomogeneous bodies at fixed frequency. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2102), 367–396 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Nguyen, H.-M.: A study of negative index materials using transformation optics with applications to super lenses, cloaking, and illusion optics: the scalar case (2012). arXiv:1204.1518V1[math-ph]
  13. 13.
    Nicorovici N.A., McPhedran R.C., Milton G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Smith D.R., Pendry J.B., Wiltshire M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. V. Kohn
    • 1
    Email author
  • J. Lu
    • 2
  • B. Schweizer
    • 3
  • M. I. Weinstein
    • 4
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Mathematics DepartmentDuke UniversityDurhamUSA
  3. 3.Fakultät für MathematikTechnische Universität DortmundDortmundGermany
  4. 4.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations