Communications in Mathematical Physics

, Volume 327, Issue 2, pp 481–519 | Cite as

Symplectic Geometry of Quantum Noise

Article

Abstract

We discuss a quantum counterpart, in the sense of the Berezin–Toeplitz quantization, of certain constraints on Poisson brackets coming from “hard” symplectic geometry. It turns out that they can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics. Our findings include various geometric mechanisms of quantum noise production and a noise-localization uncertainty relation. The methods involve Floer theory and Poisson bracket invariants originated in function theory on symplectic manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali S.T., Carmeli C., Heinosaari T., Toigo A.: Commutative POVMs and fuzzy observables. Found. Phys. 39(6), 593–612 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Festival Yves Colin de Verdière. Ann. Inst. Fourier (Grenoble) 57, 2465–2523 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Berezin F.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bordemann M., Meinrenken E., Schlichenmaier M.: Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits. Commun. Math. Phys. 165(2), 281–296 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Borthwick D., Uribe A.: Almost complex structures and geometric quantization. Math. Res. Lett. 3, 845–861 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Buhovsky L., Entov M., Polterovich L.: Poisson brackets and symplectic invariants. Selecta Math. 18, 89–157 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Burago, D., Burago, Yu., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)Google Scholar
  8. 8.
    Burago, D., Ivanov, S., Polterovich, L.: Conjugation-invariant norms on groups of geometric origin. In: Groups of Diffeomorphisms. Adv. Stud. Pure Math., vol. 52, pp. 221–250. Math. Soc. Japan, Tokyo (2008)Google Scholar
  9. 9.
    Busch, P., Grabowski, M., Lahti, P.J.: Operational quantum physics. Lecture Notes in Physics. New Series m: Monographs, vol. 31. Springer, Berlin (1995)Google Scholar
  10. 10.
    Busch P., Heinonen T., Lahti P.: Noise and disturbance in quantum measurement. Phys. Lett. A 320(4), 261–270 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Busch P., Heinonen T., Lahti P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Busch P.: On the sharpness and bias of quantum effects. Found. Phys. 39(7), 712–730 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Busch P., Pearson D.B.: Universal joint-measurement uncertainty relation for error bars. J. Math. Phys. 48, 082103 (2007)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Busch, P.: Private communication (2011)Google Scholar
  15. 15.
    Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1981)Google Scholar
  16. 16.
    Eliashberg, Y., Gromov, M.: Convex symplectic manifolds. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989). Proc. Sympos. Pure Math., vol. 52, Part 2, pp. 135–162. Amer. Math. Soc., Providence (1991)Google Scholar
  17. 17.
    Entov M., Polterovich L.: Quasi-states and symplectic intersections. Commun. Math. Helv. 81, 75–99 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Entov M., Polterovich L., Zapolsky F.: Quasi-morphisms and the Poisson bracket. Pure Appl. Math. Q. 3, 1037–1055 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Guillemin V.: Star products on compact pre-quantizable symplectic manifolds. Lett. Math. Phys. 35, 85–89 (1995)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hayashi M.: Quantum Information. An Introduction. Springer, Berlin (2006)Google Scholar
  21. 21.
    Hofer H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb. Sect. A 115(1–2), 25–38 (1990)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Janssens, B.: Unifying decoherence and the Heisenberg Principle, Preprint arXiv:quant-ph/0606093 (2006)
  23. 23.
    Ishikawa S.: Uncertainty relations in simultaneous measurements for arbitrary observables. Rep. Math. Phys. 29, 257–273 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Jencova A., Pulmannova S.: Characterizations of commutative POV measures. Found. Phys. 39, 613–624 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Landsman, N.P.: Mathematical topics between classical and quantum mechanics. Springer Monographs in Mathematics. Springer, New York (1998)Google Scholar
  26. 26.
    Massar, S.: Uncertainty relations for positive-operator-valued measures. Phys. Rev. A (3) 76(4), 042114 (2007) [Erratum: Phys. Rev. A (3) 78(5), 059901 (2008)]Google Scholar
  27. 27.
    Martens H., de Muynck W.: Nonideal quantum measurements. Found. Phys. 20, 255–281 (1990)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    Miyadera T., Imai H.: Heisenberg’s uncertainty principle for simultaneous measurement of positive-operator-valued measures. Phys. Rev. A 78, 052119 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Miyadera, T.: Uncertainty relations for joint localizability and joint measurability in finite-dimensional systems. J. Math. Phys. 52(7), 072105 (2011)Google Scholar
  30. 30.
    Ma X., Marinescu G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18, 565–611 (2008)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    McDuff D., Salamon D.: Introduction to Symplectic Topology. Oxford University Press, New York (1998)MATHGoogle Scholar
  32. 32.
    Oh Y.-G.: Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group. Asian J. Math. 6, 579–624 (2002)MATHMathSciNetGoogle Scholar
  33. 33.
    Oh, Y.-G.: Construction of spectral invariants of Hamiltonian diffeomorphisms on general symplectic manifolds. In: The Breadth of Symplectic and Poisson Geometry, pp. 525–570. Birkhäuser, Basel (2005)Google Scholar
  34. 34.
    Ozawa M.: Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A 320(5-6), 367–374 (2004)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Polterovich, L.: The geometry of the group of symplectic diffeomorphisms. Lectures in Mathematics, ETH Zürich. Birkhauser, Basel (2001)Google Scholar
  36. 36.
    Polterovich L.: Quantum unsharpness and symplectic rigidity. Lett. Math. Phys. 102, 245–264 (2012)ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Sánchez-Ruiz J.: Maassen-Uffink entropic uncertainty relation for angular momentum observables. Phys. Lett. A 181, 193–198 (1993)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys. (2010), Article ID 927280. doi:10.1155/2010/927280
  39. 39.
    Schwarz M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193, 419–461 (2000)CrossRefMATHGoogle Scholar
  40. 40.
    Usher M.: Spectral numbers in Floer theories. Compos. Math. 144, 1581–1592 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations