Advertisement

Communications in Mathematical Physics

, Volume 331, Issue 1, pp 261–295 | Cite as

On the Steady State Correlation Functions of Open Interacting Systems

  • H. D. Cornean
  • V. Moldoveanu
  • C.-A. Pillet
Article

Abstract

We address the existence of steady state Green-Keldysh correlation functions of interacting fermions in mesoscopic systems for both the partitioning and partition-free scenarios. Under some spectral assumptions on the non-interacting model and for sufficiently small interaction strength, we show that the system evolves to a NESS which does not depend on the profile of the time-dependent coupling strength/bias. For the partitioned setting we also show that the steady state is independent of the initial state of the inner sample. Closed formulae for the NESS two-point correlation functions (Green-Keldysh functions), in the form of a convergent expansion, are derived. In the partitioning approach, we show that the 0th order term in the interaction strength of the charge current leads to the Landauer-Büttiker formula, while the 1st order correction contains the mean-field (Hartree–Fock) results.

Keywords

Entropy Production Open Quantum System Quantum Statistical Mechanic Entropy Production Rate Full Counting Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A1.
    Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9, 165–209 (1973)CrossRefMATHMathSciNetGoogle Scholar
  2. A2.
    Araki H.: Relative entropy for states of von Neumann algebras II. Publ. RIMS Kyoto Univ. 13, 173–192 (1977)CrossRefMATHMathSciNetGoogle Scholar
  3. ABGK.
    Avron J.E., Bachmann S., Graf G.M., Klich I.: Fredholm determinants and the statistics of charge transport. Commun. Math. Phys. 280, 807–829 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. AH.
    Araki H., Ho T.G.: Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Proc. Steklov Inst. Math. 228, 191–204 (2000)MathSciNetGoogle Scholar
  5. AJPP1.
    Aschbacher, W., Jakšić, V., Pautrat, Y., and Pillet, C.-A: Topics in non-equilibrium quantum statistical mechanics. In: Open Quantum Systems III. Recent Developments. Attal, S., Joye, A., Pillet, C.-A. (eds.). Lecture Notes in Mathematics, Vol. 1882. Springer, Berlin, 2006Google Scholar
  6. AJPP2.
    Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free Fermions. J. Math. Phys. 48, 032101 (2007)ADSCrossRefMathSciNetGoogle Scholar
  7. AP.
    Aschbacher W., Pillet C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153–1175 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. AS.
    Aschbacher W., Spohn H.: A remark on the strict positivity of entropy production. Lett. Math. Phys. 75, 17–23 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. AW.
    Araki H., Wyss W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 139–159 (1964)MathSciNetGoogle Scholar
  10. BMa.
    Botvich D.D, Maassen H.: A Galton–Watson estimate for Dyson series. Ann. Henri Poincaré 10, 1141–1158 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. BM.
    Botvich D.D., Malyshev V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas. Commun. Math. Phys. 91, 301–312 (1983)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. BP.
    Ben Sâad, R., Pillet, C.-A.: A geometric approach to the Landauer-Büttiker formula. Preprint (2013)Google Scholar
  13. BR1.
    Bratelli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 1, Second Edition. Springer, New York (1997)CrossRefGoogle Scholar
  14. BR2.
    Bratelli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 2, Second Edition. Springer, New York (1997)CrossRefGoogle Scholar
  15. CCNS.
    Caroli C., Combescot R., Nozières P., Saint-James D.: Direct calculation of the tunneling current. J. Phys. C. Solid State Phys. 4, 916–929 (1971)ADSCrossRefGoogle Scholar
  16. Ci.
    Cini M.: Time-dependent approach to electron transport through junctions: general theory and simple applications. Phys. Rev. B. 22, 5887–5899 (1980)ADSCrossRefGoogle Scholar
  17. CDNP.
    Cornean H.D., Duclos P., Nenciu G., Purice R.: Adiabatically switched-on electrical bias and the Landauer-Büttiker formula. J. Math. Phys. 49, 102106 (2008)ADSCrossRefMathSciNetGoogle Scholar
  18. CDP.
    Cornean H.D., Duclos P., Purice R.: Adiabatic non-equilibrium steady states in the partition free approach. Ann. Henri Poincaré 13, 827–856 (2012)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. CGZ.
    Cornean H.D., Gianesello C., Zagrebnov V.: A partition-free approach to transient and steady-state charge currents. J. Phys. A. Math. Theor. 43, 474011 (2010)ADSCrossRefMathSciNetGoogle Scholar
  20. CJM.
    Cornean H.D., Jensen A., Moldoveanu V.: A rigorous proof of the Landauer-Büttiker formula. J. Math. Phys. 46, 042106 (2005)ADSCrossRefMathSciNetGoogle Scholar
  21. CM.
    Cornean H.D., Moldoveanu V.: On the cotunneling regime of interacting quantum dots. J. Phys. A. Math. Theor. 44, 305002 (2011)CrossRefMathSciNetGoogle Scholar
  22. CNZ.
    Cornean H., Neidhardt H., Zagrebnov V.: The Effect of time-dependent coupling on non-equilibrium steady states. Ann. Henri Poincaré 10, 61–93 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. Da1.
    Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)ADSCrossRefMATHGoogle Scholar
  24. Da2.
    Davies E.B.: Markovian master equations. II. Math. Ann. 219, 147–158 (1976)CrossRefMATHMathSciNetGoogle Scholar
  25. Da3.
    Davies E.B.: Markovian master equations. III. Ann. Inst. H. Poincaré, Sect. B 11, 265–273 (1975)MATHGoogle Scholar
  26. DeGe.
    Dereziński J., Gérard C.: Mathematics of quantization and quantum fields. Cambridge University Press, Cambridge (2013)CrossRefMATHGoogle Scholar
  27. DFG.
    Dirren, S.: ETH diploma thesis winter 1998/99, chapter 5 (written under the supervision of J. Fröhlich and G.M. Graf)Google Scholar
  28. DK.
    de Roeck, W., Kupiainen, A.: ‘Return to Equilibrium’ for weakly coupled quantum systems: a simple polymer expansion. Commun. Math. Phys. 305, 797–826 (2011)Google Scholar
  29. DM.
    de Roeck W., Maes C.: Steady state fluctuations of the dissipated heat for a quantum stochastic model. Rev. Math. Phys. 18, 619–654 (2006)CrossRefMATHMathSciNetGoogle Scholar
  30. DR.
    de Roeck W.: Large deviation generating function for currents in the Pauli–Fierz model. Rev. Math. Phys. 21, 549–585 (2009)CrossRefMATHMathSciNetGoogle Scholar
  31. DRM.
    Dereziński, J., de Roeck, W., Maes, C.: Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131, 341–356 (2008)Google Scholar
  32. EHM.
    Esposito M., Harbola U., Mukamel S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. Ev.
    Evans D.E.: Scattering in the CAR algebra. Commun. Math. Phys. 48, 23–30 (1976)ADSCrossRefMATHGoogle Scholar
  34. FMSU.
    Fröhlich, J., Merkli, M., Schwarz, S., Ueltschi, D.: Statistical mechanics of thermodynamic processes. In: Arafune, J., et al. (eds.). A Garden of Quanta (Essays in Honor of Hiroshi Ezawa). World Scientific, London, Singapore, Hong Kong (2003)Google Scholar
  35. FMU.
    Fröhlich J., Merkli M., Ueltschi D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897–945 (2004)ADSCrossRefGoogle Scholar
  36. FNBSJ.
    Flindt C., Novotny T., Braggio A., Sassetti M., Jauho A.-P.: Counting statistics of non-Markovian quantum stochastic processes. Phys. Rev. Lett. 100, 150601 (2008)ADSCrossRefGoogle Scholar
  37. FNBJ.
    Flindt C., Novotny T., Braggio A., Jauho A.-P.: Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects. Phys. Rev. B. 82, 155407 (2010)ADSCrossRefGoogle Scholar
  38. H.
    Hewson A.C.: The Kondo problem to heavy Fermions. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  39. He1.
    Hepp K.: Rigorous results on the s–d model of the Kondo effect. Solid State Commun. 8, 2087–2090 (1970)ADSCrossRefGoogle Scholar
  40. He2.
    Hepp, K.: Results and problems in irreversible statistical mechanics of open systems. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics, January 23–29, 1975, Kyoto University, Kyoto, Japan. Lecture Notes in Physics 39, Springer, Berlin, (1975)Google Scholar
  41. Im.
    Imry Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (1997)Google Scholar
  42. JK.
    Jensen A., Kato T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)CrossRefMATHMathSciNetGoogle Scholar
  43. JOP1.
    Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721–738 (2006)ADSCrossRefMATHGoogle Scholar
  44. JOP2.
    Jakšić V., Ogata Y., Pillet C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547–569 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  45. JOP3.
    Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007)ADSCrossRefMATHGoogle Scholar
  46. JOPP.
    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics – an introduction. In: Fröhlich J., Salmhofer M., de Roeck W., Mastropietro V., Cugliandolo L.F. (eds.) Quantum theory from small to large scales. Oxford University Press, Oxford, 2012Google Scholar
  47. JOPS.
    Jakšić V., Ogata Y., Pillet C.-A., Seiringer R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)CrossRefMathSciNetGoogle Scholar
  48. JP1.
    Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)ADSCrossRefMATHGoogle Scholar
  49. JP2.
    Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002)ADSCrossRefMATHGoogle Scholar
  50. JP3.
    Jakšić V., Pillet C.-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285–293 (2001)ADSCrossRefMATHGoogle Scholar
  51. JP4.
    Jakšić V., Pillet C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175–180 (2003)CrossRefGoogle Scholar
  52. JP5.
    Jakšić, V., Pillet, C.-A.: On the strict positivity of entropy production. In: Germinet, F., Hislop, P.D. (eds.) Adventures in Mathematical Physics-transport and Spectral Problems in Quantum Mechanics: a Conference in Honor of Jean-Michel Combes. Contemp. Math., Vol. 447, 2007 pp. 153–163Google Scholar
  53. JPP.
    Jakšić V., Pautrat Y., Pillet C.-A.: Central limit theorem for locally interacting Fermi gas. Commun. Math. Phys. 285, 175–217 (2009)ADSCrossRefMATHGoogle Scholar
  54. JWM.
    Jauho A.-P., Wingreen N.S., Meir Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994)ADSCrossRefGoogle Scholar
  55. KAO.
    Kashcheyevs V., Aharony A., Entin-Wohlman O.: Applicability of the equations-of-motion technique for quantum dots. Phys. Rev. B. 73, 125338 (2006)ADSCrossRefGoogle Scholar
  56. Ke.
    Keldysh, L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz., Vol. 47, 1515–1527 (1964). English translation in Sov. Phys. JETP, Vol. 20, 1018–1026 (1965)Google Scholar
  57. KSKVG.
    Kurth S., Stefanucci G., Khosravi E., Verdozzi C., Gross E.K.U.: Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys. Rev. Lett. 104, 236801 (2010)ADSCrossRefGoogle Scholar
  58. LL.
    Levitov L.S., Lesovik G.B.: Charge distribution in quantum shot noise. JETP Lett. 58, 230–235 (1993)ADSGoogle Scholar
  59. LLL.
    Levitov L.S., Lee H., Lesovik G.B.: Electron counting statistics and coherent states of electric current. J. Math. Phys. 37, 4845–4866 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  60. LS.
    Lebowitz J.L., Spohn H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)Google Scholar
  61. MCP.
    Moldoveanu V., Cornean H.D., Pillet C.-A.: Non-equilibrium steady-states for interacting open systems: exact results. Phys. Rev. B. 84, 075464 (2011)ADSCrossRefGoogle Scholar
  62. MMS.
    Merkli M., Mück M., Sigal I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. Henri Poincaré 8, 1539–1593 (2007)ADSCrossRefMATHGoogle Scholar
  63. MSSL.
    Myohanen, P., Stan, A., Stefanucci, G., van Leeuwen, R.: Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime. Phys. Rev. B 80, 115107 (2009)Google Scholar
  64. MW.
    Meir Y., Wingreen N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)ADSCrossRefGoogle Scholar
  65. Ne.
    Nenciu G.: Independent electrons model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)ADSCrossRefMathSciNetGoogle Scholar
  66. NT.
    Narnhofer H., Thirring W.: Adiabatic theorem in quantum statistical mechanics. Phys. Rev. A 26, 3646–3652 (1982)ADSCrossRefMathSciNetGoogle Scholar
  67. P.
    Pearson, D.B.: Quantum scattering and spectral theory. Academic Press, London, 1988Google Scholar
  68. Pi.
    Pillet, C.-A.: Quantum dynamical systems. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open quantum systems I. Lecture Notes in Mathematics, Vol. 1880, Springer Verlag, Berlin, 2006Google Scholar
  69. FVA.
    van Friesen, M.P., Verdozzi, V., Almbladh, C.-O.: Kadanoff-Baym dynamics of Hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys. Rev. B 82, 155108 (2010)Google Scholar
  70. PG.
    Pustilnik M., Glazman L.: Kondo effect in quantum dots. J. Phys. Condens. Matter 16, R513–R537 (2004)ADSCrossRefGoogle Scholar
  71. RS2.
    Reed, M., Simon, B.: Methods of modern Mathematical Physics. II: Fourier analysis, self-adjointness. Academic Press, New York, 1975Google Scholar
  72. RS3.
    Reed M., Simon B.: Methods of modern Mathematical Physics. III: scattering theory. Academic Press, New York (1979)MATHGoogle Scholar
  73. Ro.
    Robinson D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)ADSCrossRefMATHGoogle Scholar
  74. Ru1.
    Ruelle D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000)CrossRefMATHMathSciNetGoogle Scholar
  75. Ru2.
    Ruelle D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3–16 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  76. Sp.
    Spohn H.: An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33–38 (1977)ADSCrossRefMATHMathSciNetGoogle Scholar
  77. TR.
    Thygesen K.S., Rubio A.: Conserving GW scheme for nonequilibrium quantum transport in molecular contacts. Phys. Rev. B 77, 115333 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.National Institute of Materials PhysicsBucharest-MagureleRomania
  3. 3.Aix-Marseille Université, CNRS UMR 7332, CPTMarseilleFrance
  4. 4.Université de Toulon, CNRS UMR 7332, CPTLa GardeFrance
  5. 5.FRUMAMMarseilleFrance

Personalised recommendations