Communications in Mathematical Physics

, Volume 329, Issue 3, pp 979–998 | Cite as

Anderson’s Orthogonality Catastrophe

Article

Abstract

We give an upper bound on the modulus of the ground-state overlap of two non-interacting fermionic quantum systems with N particles in a large but finite volume Ld of d-dimensional Euclidean space. The underlying one-particle Hamiltonians of the two systems are standard Schrödinger operators that differ by a non-negative compactly supported scalar potential. In the thermodynamic limit, the bound exhibits an asymptotic power-law decay in the system size L, showing that the ground-state overlap vanishes for macroscopic systems. The decay exponent can be interpreted in terms of the total scattering cross section averaged over all incident directions. The result confirms and generalises P. W. Anderson’s informal computation (Phys. Rev. Lett. 18:1049–1051, 1967).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. And67a.
    Anderson P.W.: Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967)ADSCrossRefGoogle Scholar
  2. And67b.
    Anderson P.W.: Ground state of a magnetic impurity in a metal. Phys. Rev. 164, 352–359 (1967)ADSCrossRefGoogle Scholar
  3. Bau01.
    Bauer H.: Measure and integration theory. de Gruyter, Berlin (2001)CrossRefMATHGoogle Scholar
  4. BC03.
    Basor E.L., Chen Y.: The X-ray problem revisited. J. Phys. A 36, L175–L180 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. BÈ67.
    Birman, M.Š., Èntina, S.B.: The stationary method in the abstract theory of scattering. Math. USSR Izv. 1, 391–420 (1967) [Russian original: Izv. Akad. Nauk SSSR Ser. Mat. 31, 401–430 (1967)]Google Scholar
  6. BHL00.
    Broderix K., Hundertmark D., Leschke H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12, 181–225 (2000)CrossRefMATHMathSciNetGoogle Scholar
  7. Els05.
    Elstrodt J.: Maß- und Integrationstheorie. Springer, Berlin (2005)MATHGoogle Scholar
  8. FLLS11.
    Frank R.L., Lewin M., Lieb E.H., Seiringer R.: Energy cost to make a hole in the Fermi sea. Phys. Rev. Lett. 106, 150402 (2011)ADSCrossRefGoogle Scholar
  9. GK03.
    Germinet F., Klein A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 131, 911–920 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. Ham71.
    Hamann D.R.: Orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 1030–1032 (1971)ADSCrossRefMathSciNetGoogle Scholar
  11. HG07.
    Hentschel M., Guinea F.: Orthogonality catastrophe and Kondo effect in graphene. Phys. Rev. B 76, 115407 (2007)ADSCrossRefGoogle Scholar
  12. HK12a.
    Heyl M., Kehrein S.: Crooks relation in optical spectra: Universality in work distributions for weak local quenches. Phys. Rev. Lett. 108, 190601 (2012)ADSCrossRefGoogle Scholar
  13. HK12b.
    Heyl M., Kehrein S.: X-ray edge singularity in optical spectra of quantum dots. Phys. Rev. B 85, 155413 (2012)ADSCrossRefGoogle Scholar
  14. HM10.
    Hislop P.D., Müller P.: The spectral shift function for compactly supported perturbations of Schrödinger operators on large bounded domains. Proc. Amer. Math. Soc. 138, 2141–2150 (2010)CrossRefMATHMathSciNetGoogle Scholar
  15. HS00.
    Hunziker W., Sigal I.M.: The quantum N-body problem. J. Math. Phys. 41, 3448–3510 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. HSBvD05.
    Helmes R.W., Sindel M., Borda L., von Delft J.: Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B 72, 125301 (2005)ADSCrossRefGoogle Scholar
  17. HUB05.
    Hentschel M., Ullmo D., Baranger H.U.: Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe. Phys. Rev. B 72, 035310 (2005)ADSCrossRefGoogle Scholar
  18. Kir87.
    Kirsch W.: Small perturbations and the eigenvalues of the Laplacian on large bounded domains. Proc. Amer. Math. Soc. 101, 509–512 (1987)CrossRefMATHMathSciNetGoogle Scholar
  19. KOS.
    Küttler, H., Otte, P., Spitzer, W.: Anderson’s orthogonality catastrophe for one-dimensional systems, e-print arXiv:1301.4923, Ann. Henri Poincaré. doi:10.1007/s00023-013-0287-z
  20. KY78.
    Kaga H., Yosida K.: Orthogonality catastrophe due to local electron correlation. Prog. Theor. Phys. 59, 34–39 (1978)ADSCrossRefGoogle Scholar
  21. NdD69.
    Nozières P., de Dominicis C.T.: Singularities in the X-ray absorption and emission of metals. iii. one-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969)ADSCrossRefGoogle Scholar
  22. OT90.
    Ohtaka K., Tanabe Y.: Theory of the soft-X-ray edge problem in simple metals: historical survey and recent developments. Rev. Mod. Phys. 62, 929–991 (1990)ADSCrossRefGoogle Scholar
  23. Ott05.
    Otte P.: An adiabatic theorem for section determinants of spectral projections. Math. Nachr. 278, 470–484 (2005)CrossRefMATHMathSciNetGoogle Scholar
  24. RH10.
    Röder G., Hentschel M.: Orthogonality catastrophe in ballistic quantum dots: Role of level degeneracies and confinement geometry. Phys. Rev. B 82, 125312 (2010)ADSCrossRefGoogle Scholar
  25. RS71.
    Rivier N., Simanek E.: Exact calculation of the orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 435–438 (1971)ADSCrossRefGoogle Scholar
  26. RS79.
    Reed M., Simon B.: Methods of modern mathematical physics III. Academic Press, New York (1979)MATHGoogle Scholar
  27. Sim82.
    Simon B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7 447–526 (1982)CrossRefMATHMathSciNetGoogle Scholar
  28. Sim05.
    Simon, B.: Trace ideals and their applications, Mathematical Surveys and Monographs, vol. 120, 2nd ed. American Mathematical Society, Providence (2005)Google Scholar
  29. Ste93.
    Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)Google Scholar
  30. Sto01.
    Stollmann P.: Caught by disorder: bound states in random media, Progress in Mathematical Physics, vol. 20. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  31. THC+11.
    Türeci, H.E., Hanl, M., Claassen, M., Weichselbaum, A., Hecht, T., Braunecker, B., Govorov, A., Glazman, L., Imamoglu, A., von Delft, J.: Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards Kondo correlations. Phys. Rev. Lett. 106, 107402 (2011)Google Scholar
  32. Wei80.
    Weidmann, J.: Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer, New York (1980)Google Scholar
  33. Yaf00.
    Yafaev D.: Scattering theory: some old and new problems, Lecture Notes in Mathematics, vol. 1735. Springer, Berlin (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Gebert
    • 1
  • Heinrich Küttler
    • 1
  • Peter Müller
    • 1
  1. 1.Mathematisches InstitutLudwig-Maximilians-UniversitÄt MünchenMünchenGermany

Personalised recommendations