Advertisement

Communications in Mathematical Physics

, Volume 325, Issue 2, pp 367–419 | Cite as

Gauge Theories Labelled by Three-Manifolds

  • Tudor Dimofte
  • Davide Gaiotto
  • Sergei Gukov
Article

Abstract

We propose a dictionary between geometry of triangulated 3-manifolds and physics of three-dimensional \({\mathcal{N} = 2}\) gauge theories. Under this duality, standard operations on triangulated 3-manifolds and various invariants thereof (classical as well as quantum) find a natural interpretation in field theory. For example, independence of the SL(2) Chern-Simons partition function on the choice of triangulation translates to a statement that \({S^{3}_{b}}\) partition functions of two mirror 3d \({\mathcal{N} = 2}\) gauge theories are equal. Three-dimensional \({\mathcal{N} = 2}\) field theories associated to 3-manifolds can be thought of as theories that describe boundary conditions and duality walls in four-dimensional \({\mathcal{N} = 2}\) SCFTs, thus making the whole construction functorial with respect to cobordisms and gluing.

Keywords

Gauge Theory Partition Function Modulus Space Coulomb Branch Chiral Multiplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaiotto, D.: N = 2 dualities. http://arxiv.org/abs/0904.2715v1 [hep-th], 2009
  2. 2.
    Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010)CrossRefzbMATHMathSciNetADSGoogle Scholar
  3. 3.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010)CrossRefzbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Dimofte, T., Gukov, S., Hollands, L.: Vortex Counting and Lagrangian 3-Manifolds. http://arxiv.org/abs/1006.0977v1 [hep-th], 2010
  5. 5.
    Hama, N., Hosomichi, K., Lee, S.: SUSY Gauge Theories on Squashed Three-Spheres. http://arxiv.org/abs/1102.4716v1 [hep-th], 2011
  6. 6.
    Thurston, W.: The Geometry and Topology of Three-Manifolds. Lecture notes at Princeton University, 1980, available at http://library.msri.org/nonmsri/gt3m, 2002
  7. 7.
    Witten E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B311(1), 46–78 (1988)CrossRefADSGoogle Scholar
  8. 8.
    Gukov S.: Three-dimensional quantum gravity, Chern-Simons theory, and the a-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005)CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    Dimofte T., Gukov S., Lenells J., Zagier D.: Exact results for perturbative Chern-Simons Theory with complex gauge group. Comm. Num. Thy. Phys. 3(2), 363–443 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Champanerkar, A.: A-Polynomial and Bloch Invariants of Hyperbolic 3-Manifolds. Ph.D. Thesis, Columbia University, 2003Google Scholar
  11. 11.
    Boyd D.W., Rodriguez-Villegas F., Dunfield N.M.: Mahler’s measure and the Dilogarithm (II). Can. J. Math. 54(3), 468–492 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dimofte, T.: Quantum Riemann Surfaces in Chern-Simons Theory. http://arxiv.org/abs/1102.4847v3 [hep-th], 2011
  13. 13.
    Dimofte, T., Gaiotto, D., van der Veen, R.: Seiberg-Witten Duality Walls and Hybrid Triangulations. (in preparation)Google Scholar
  14. 14.
    Neumann W.D., Zagier D.: Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fock V.V., Goncharov A.B.: Moduli spaces of local systems and higher teichmuller theory. Publ. Math. Inst. Hautes Etudes Sci. 103, 1–211 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin Systems, and the WKB Approximation. http://arxiv.org/abs/0907.3987v2 [hep-th], 2011
  17. 17.
    Thurston, W.P.: Minimal Stretch Maps between Hyperbolic Surfaces. math.GT (1986), available at http://arxiv.org/abs/math/9801039v1 [math.GT], 1998 (Preprint)
  18. 18.
    Fock, V.V.: Dual Teichmüller Spaces. http://arxiv.org/abs/dg-ga/9702018v3, 1998
  19. 19.
    Cooper D., Culler M., Gillet H., Long D., Shalen P.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118(1), 47–84 (1994)CrossRefzbMATHMathSciNetADSGoogle Scholar
  20. 20.
    Neumann, W.: Combinatorics of Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds. In: Topology ’90, Ohio State Univ. Math. Res. Inst. Publ. Vol. 1, Berlin: Walter de Gruyter, 1992Google Scholar
  21. 21.
    Matveev, S.: Algorithmic topology and classification of 3-manifolds. In: Algorithms and Computation in Mathematics, Springer, Vol. 9, Berlin-Heidelberg-New York: Springer, 2007, xiv+492Google Scholar
  22. 22.
    Penner R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113(2), 299–339 (1987)CrossRefzbMATHMathSciNetADSGoogle Scholar
  23. 23.
    Chekhov L., Fock V.V.: Quantum Teichmüller space. Theor. Math. Phys. 120(3), 1245–1259 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kashaev R.M.: Quantization of Teichmüller spaces and the quantum Dilogarithm. Lett. Math. Phys. 43(2), 105–115 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Witten, E.: SL(2, Z) Action On Three-Dimensional Conformal Field Theories With Abelian Symmetry. http://arxiv.org/abs/hep-th/0307041v3, 2003
  26. 26.
    Gaiotto D., Witten E.: S-Duality of boundary conditions In N = 4 super Yang-Mills theory. Adv. Theor. Math. Phys. 13(2), 721–896 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hua L.K., Reiner I.: On the generators of the symplectic modular group. Trans. Am. Math. Soc. 65, 415–426 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Intriligator K., Seiberg N.: Mirror symmetry in three dimensional gauge theories. Phys. Lett. B387, 513–519 (1996)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    de Boer J., Hori K., Ooguri H., Yin Z.: Mirror symmetry in three-dimensional gauge theories, SL(2, Z) and D-Brane moduli spaces. Nucl. Phys. B493, 148–176 (1996)Google Scholar
  30. 30.
    Kapustin A., Strassler M.J.: On mirror symmetry in three dimensional abelian gauge theories. JHEP 9904, 021 (1999)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Aharony O., Hanany A., Intriligator K., Seiberg N., Strassler M.J.: Aspects of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B499(1–2), 67–99 (1997)CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Nishino H., Gates J.: Chern-Simons theories with supersymmetries in three dimensions. Int. J. Mod. Phys. A 8(19), 3371–3421 (1993)CrossRefzbMATHMathSciNetADSGoogle Scholar
  33. 33.
    de Boer J., Hori K., Oz Y.: Dynamics of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B500, 163–191 (1997)CrossRefADSGoogle Scholar
  34. 34.
    Dorey N., Tong D.: Mirror symmetry and toric geometry in three-dimensional gauge theories. JHEP 5, 018 (2000)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS States. http://arxiv.org/abs/1006.0146v2 [hep-th], 2012
  36. 36.
    Dimofte, T., Gukov, S.: Chern-Simons Theory and S-duality. http://arxiv.org/abs/1106.4550v1 [hep-th], 2011
  37. 37.
    Nekrasov N.A., Shatashvili S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. B, Proc. Suppl. 192–193, 91–112 (2009)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of Integrable Systems and Four Dimensional Gauge Theories. In: 16th International Congress on Mathematical Physics, Prague, August 2009, River Edge, NJ: World Scientific 2010, 2009, pp. 265–289Google Scholar
  39. 39.
    Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux Coordinates, Yang-Yang Functional, and Gauge Theory. http://arxiv.org/abs/1103.3919v1 [hep-th], 2011
  40. 40.
    Nekrasov N.: Five dimensional gauge theories and relativistic integrable systems. Nucl. Phys. B531, 323–344 (1998)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Lawrence A., Nekrasov N.: Instanton sums and five-dimensional gauge theories. Nucl. Phys. B513, 239–268 (1998)CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Gadde A., Pomoni E., Rastelli L., Razamat S.S.: S-duality and 2d topological QFT. JHEP 1003, 032 (2010)CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Gadde A., Rastelli L., Razamat S.S., Yan W.: The 4d superconformal index from q-deformed 2d Yang-Mills. Phys. Rev. Lett. 106, 241602 (2011)CrossRefADSGoogle Scholar
  44. 44.
    Drukker, N., Gaiotto, D., Gomis, J.: The Virtue of Defects in 4D Gauge Theories and 2D CFTs. http://arxiv.org/abs/1003.1112v2 [hep-th], 2010
  45. 45.
    Hosomichi K., Lee S., Park J.: AGT on the S-duality Wall. JHEP 1012, 079 (2010)CrossRefADSGoogle Scholar
  46. 46.
    Terashima Y., Yamazaki M.: SL(2,R) Chern-Simons, Liouville, and gauge theory on duality walls. JHEP 1108, 135 (2011)CrossRefADSGoogle Scholar
  47. 47.
    Witten, E.: Analytic Continuation of Chern-Simons Theory. http://arxiv.org/abs/1001.2933v4 [hep-th], 2010
  48. 48.
    Shale D.: Linear symmetries of free boson fields. Trans. Am. Math. Soc. 103, 149–167 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Weil A.: Sur certains groupes d’Opérateurs Unitaires. Acta Math. 111, 143–211 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Kapustin A., Willett B., Yaakov I.: Exact results for Wilson Loops in superconformal Chern-Simons theories with matter. JHEP 1003, 089 (2010)CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Barnes E.: The genesis of the double gamma functions. Proc. Lond. Math. Soc. 31, 358–381 (1899)CrossRefzbMATHGoogle Scholar
  52. 52.
    Faddeev L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34(3), 249–254 (1995)CrossRefzbMATHMathSciNetADSGoogle Scholar
  53. 53.
    Faddeev L.D., Kashaev R.M., Volkov A.Y.: Strongly coupled quantum discrete Liouville theory. I: algebraic approach and duality. Commun. Math. Phys. 219(1), 199–219 (2001)CrossRefzbMATHMathSciNetADSGoogle Scholar
  54. 54.
    Ponsot B., Teschner J.: Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of Uq(sl(2,R)). Commun. Math. Phys. 224, 613–655 (2001)CrossRefMathSciNetADSGoogle Scholar
  55. 55.
    Hikami K.: Generalized volume conjecture and the A-polynomials-the Neumann-Zagier potential function as a classical limit of quantum invariant. J. Geom. Phys. 57(9), 1895–1940 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar
  56. 56.
    Terashima Y., Yamazaki M.: Semiclassical analysis of the 3d/3d relation. Phys. Rev. D88, 026011 (2013)ADSGoogle Scholar
  57. 57.
    Spiridonov, V.P., Vartanov, G.S.: Elliptic Hypergeometry of Supersymmetric Dualities II. Orthogonal Groups, Knots, and Vortices. http://arxiv.org/abs/1107.5788v4 [hep-th], 2013
  58. 58.
    Garoufalidis S., Le T.T.: The colored Jones function is q-holonomic. Geom. Topol. 9, 1253–1293 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Garoufalidis S.: On the characteristic and deformation varieties of a knot. Geom. Topol. Monogr. 7, 291–304 (2004)MathSciNetGoogle Scholar
  60. 60.
    Drukker N., Morrison D.R., Okuda T.: Loop operators and S-duality from curves on Riemann surfaces. JHEP 0909, 031 (2009)CrossRefMathSciNetADSGoogle Scholar
  61. 61.
    Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H.: Loop and surface operators in N = 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010)CrossRefMathSciNetADSGoogle Scholar
  62. 62.
    Drukker N., Gomis J., Okuda T., Teschner J.: Gauge theory loop operators and Liouville theory. JHEP 1002, 057 (2010)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations