Communications in Mathematical Physics

, Volume 324, Issue 2, pp 637–655 | Cite as

Conification of Kähler and Hyper-Kähler Manifolds

Article

Abstract

Given a Kähler manifold M endowed with a Hamiltonian Killing vector field Z, we construct a conical Kähler manifold \({\hat{M}}\) such that M is recovered as a Kähler quotient of \({\hat{M}}\). Similarly, given a hyper-Kähler manifold (M, g, J1, J2, J3) endowed with a Killing vector field Z, Hamiltonian with respect to the Kähler form of J1 and satisfying \({\mathcal{L}_ZJ_2 = -2J_3}\), we construct a hyper-Kähler cone \({\hat{M}}\) such that M is a certain hyper-Kähler quotient of \({\hat{M}}\). In this way, we recover a theorem by Haydys. Our work is motivated by the problem of relating the supergravity c-map to the rigid c-map. We show that any hyper-Kähler manifold in the image of the c-map admits a Killing vector field with the above properties. Therefore, it gives rise to a hyper-Kähler cone, which in turn defines a quaternionic Kähler manifold. Our results for the signature of the metric and the sign of the scalar curvature are consistent with what we know about the supergravity c-map.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AC.
    Alekseevsky D.V., Cortés V.: Geometric construction of the r-map: from affine special real to special K ähler manifolds. Commun. Math. Phys. 291(2), 579 (2009)ADSCrossRefMATHGoogle Scholar
  2. ACD.
    Alekseevsky D.V., Cortés V., Devchand C.: Special complex manifolds. J. Geom. Phys. 42, 85 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  3. APP.
    Alexandrov S., Persson D., Pioline B.: Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. JHEP 1112, 027 (2011)MathSciNetADSCrossRefGoogle Scholar
  4. APSV.
    Alexandrov S., Pioline B., Saueressig F., Vandoren S.: Linear perturbations of quaternionic metrics. Commun. Math. Phys. 296(2), 353–403 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  5. BC.
    Baues O., Cortés V.: Realisation of special K ähler manifolds as parabolic spheres. Proc. Amer. Math. Soc. 129(8), 2403–2407 (2010)CrossRefGoogle Scholar
  6. CFG.
    Cecotti, S., Ferrara, S., Girardello, L.: Geometry of type-II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A4: 2475 (1989)Google Scholar
  7. CM1.
    Cortés V., Mohaupt T.: Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes. JHEP 07, 066 (2009)ADSCrossRefGoogle Scholar
  8. CM.
    Cortés V., Han X., Mohaupt T.: Completeness in supergravity constructions. Commun. Math. Phys. 311(1), 191–213 (2012)ADSCrossRefMATHGoogle Scholar
  9. CMMS1.
    Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry I: vector multiplets. J. High Energy Phys. 2004, no. 3, 028, 73 ppGoogle Scholar
  10. DV.
    de Wit B., Van Proeyen A.: Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307–333 (1992)ADSCrossRefMATHGoogle Scholar
  11. FS.
    Ferrara S., Sabharwal S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317–332 (1990)MathSciNetADSCrossRefGoogle Scholar
  12. Haydys.
    Haydys A.: Hyper-Kähler and quaternionic Kähler manifolds with s 1-symmetries. J. Geom. Phys. 58(3), 293–306 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  13. H1.
    Hitchin N.: The moduli space of complex Lagrangian submanifolds. Asian J. Math. 3(1), 77–91 (1999)MathSciNetMATHGoogle Scholar
  14. H2.
    Hitchin, N.: Quaternionic Kähler moduli spaces. In: Riemannian Topology and Geometric Structures on Manifolds, K. Galicki, S. Simanca (eds.), Progress in Mathematics 271, Basel-Boston: Birkhäuser, 2009, PP 9-61Google Scholar
  15. HKLR.
    Hitchin N., Karlhede A., Lindström U., Roček M.: Hyperkähler Metrics and Supersymmetry. Commun. Math. Phys. 108, 535–589 (1987)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsMoscowRussia
  2. 2.Masaryk UniversityBrnoCzech Republic
  3. 3.Department of Mathematics and Center for Mathematical PhysicsUniversity of HamburgHamburgGermany
  4. 4.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations