Communications in Mathematical Physics

, Volume 324, Issue 2, pp 351–399

Commuting Pauli Hamiltonians as Maps between Free Modules

Article

Abstract

We study unfrustrated spin Hamiltonians that consist of commuting tensor products of Pauli matrices. Assuming translation-invariance, a family of Hamiltonians that belong to the same phase of matter is described by a map between modules over the translation-group algebra, so homological methods are applicable. In any dimension every point-like charge appears as a vertex of a fractal operator, and can be isolated with energy barrier at most logarithmic in the separation distance. For a topologically ordered system in three dimensions, there must exist a point-like nontrivial charge. A connection between the ground state degeneracy and the number of points on an algebraic set is discussed. Tools to handle local Clifford unitary transformations are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitaev A.Yu.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Wen X.-G.: Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664–2672 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Hasan M.Z., Kane C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Alicki R., Horodecki M., Horodecki P., Horodecki R.: On thermal stability of topological qubit in Kitaev’s 4d model. Open Syst. Inf. Dyn. 17, 1 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chesi S., Loss D., Bravyi S., Terhal B.M.: Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes. New J. Phys. 12, 025013 (2009)CrossRefGoogle Scholar
  7. 7.
    Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83(4), 042330 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Bravyi S., Haah J.: On the energy landscape of 3d spin hamiltonians with topological order. Phys. Rev. Lett. 107, 150504 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Bravyi, S., Haah, J.: Analytic and numerical demonstration of quantum self-correction in the 3d cubic code. December 2011, http://arxiv.org/abs/1112.3252v1 [quant-ph], 2011
  10. 10.
    Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys.Rev.Lett. 78, 405–408 (1997)MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Vyalyi, M.N., Kitaev, A.Yu., Shen, A.H.: Classical and Quantum Computation. Providence, RI: Amer. Math. Soc., 2002Google Scholar
  12. 12.
    Martin O., Odlyzko A.M., Wolfram S.: Algebraic properties of cellular automata. Commun. Math. Phys. 93, 219–258 (1984)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    Yoshida B.: Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes. Ann. Phys. 326, 15–95 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Bombin, H.: Structure of 2D topological stabilizer codes. July 2011, http://arxiv.org/abs/1107.2707v1 [quant-ph], 2011
  15. 15.
    Bombin H., Duclos-Cianci Guillaume, Poulin David: Universal topological phase of two-dimensional stabilizer codes. New J. Phys. 14(7), 073048 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Yoshida B.: Feasibility of self-correcting quantum memory and thermal stability of topological order. Ann. Phys. 326(10), 2566–2633 (2011)ADSCrossRefMATHGoogle Scholar
  17. 17.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Amsterdam: North-Holland, 1977Google Scholar
  18. 18.
    Güneri C., Özbudak F.: Multidimensional cyclic codes and artinschreier type hypersurfaces over finite fields. Finite Fields and Their Appl. 14(1), 44–58 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Goppa V.D.: Algebraico-geometric codes. Math. USSR-Izve. 21(1), 75 (1983)CrossRefMATHGoogle Scholar
  20. 20.
    Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Steane A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 452, 2551 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    Gottesman D.: A class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862 (1996)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Kim, I.H.: 3d local qupit quantum code without string logical operator. February 2012, http://arxiv.org/abs/1202.0052v1 [quant-ph], 2012
  24. 24.
    Michalakis S., Pytel J.: Stability of frustration-free hamiltonians. Commun. Math. Phys. 332(2), 277–302 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609–627 (2011)MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Berlin-Heidelberg-New York: Springer, 2004Google Scholar
  28. 28.
    Pauer F., Unterkircher A.: Gröbner bases for ideals in laurent polynomial rings and their application to systems of difference equations. Applicable Algebra in Engineering, Communication and Computing 9(4), 271–291 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Buchsbaum, D.A., Eisenbud, D.: What makes a complex exact? J. Alg. 25(2), 259–268 (1973)Google Scholar
  30. 30.
    Northcott, D. G.: Finite Free Resolutions. Cambridge: Cambridge University Press, 1976Google Scholar
  31. 31.
    Atiyah, M. F., MacDonald, I. G.: Introduction to Commutative Algebra. Boulder, Co: Westview, 1969Google Scholar
  32. 32.
    Lang S., Weil A.: Number of points of varieties in finite fields. Amer. J. Math. 76(4), 819–827 (1954)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Newman M.E.J., Moore C.: Glassy dynamics and aging in an exactly solvable spin model. Phys. Rev. E 60, 5068–5072 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Bruns, W., Vetter, U.: Determinantal Rings. Lecture Notes in Mathematics 1327, Berlin-Heidelberg-New York: Springer-Verlag, 1988Google Scholar
  35. 35.
    Lang, S.: Algebra. Revised 3rd edition, Springer, 2002Google Scholar
  36. 36.
    Wen X.-G.: Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Chamon C.: Quantum glassiness. Phys. Rev. Lett. 94, 040402 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Bravyi S., Leemhuis B., Terhal B.M.: Topological order in an exactly solvable 3D spin model. Ann. Phys. 326(4), 839–866 (2011)MathSciNetADSCrossRefMATHGoogle Scholar
  39. 39.
    Levin M., Wen X.-G.: Fermions, strings, and gauge fields in lattice spin models. Phys. Rev. B 67, 245316 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Quantum Information and MatterCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations