Communications in Mathematical Physics

, Volume 323, Issue 3, pp 1121–1153 | Cite as

A Framework for Bounding Nonlocality of State Discrimination

  • Andrew M. Childs
  • Debbie Leung
  • Laura Mančinska
  • Maris Ozols
Article

Abstract

We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070–1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070–1091, 1999).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBKW09.
    Bandyopadhyay S., Brassard G., Kimmel S., Wootters W.K.: Entanglement cost of nonlocal measurements. Phys. Rev. A 80, 012313 (2009)ADSCrossRefGoogle Scholar
  2. BDF+99.
    Bennett C.H., DiVincenzo D.P., Fuchs C.A., Mor T., Rains E., Shor P.W., Smolin J.A., Wootters W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)MathSciNetADSCrossRefGoogle Scholar
  3. BDM+99.
    Bennett C.H., DiVincenzo D.P., Mor T., Shor P.W., Smolin J.A., Terhal B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)MathSciNetADSCrossRefGoogle Scholar
  4. BT10.
    Brodutch A., Terno D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062316 (2010)MathSciNetCrossRefGoogle Scholar
  5. CCL11.
    Cui W., Chitambar E., Lo H.-K.: Increasing entanglement by separable operations and new monotones for W-type entanglement. Phys. Rev. A 85, 062316 (2012)ADSCrossRefGoogle Scholar
  6. Che04.
    Chefles A.: Condition for unambiguous state discrimination using local operations and classical communication. Phys. Rev. A 69, 050307 (2004)ADSCrossRefGoogle Scholar
  7. CL03.
    Chen P.-X., Li C.-Z.: Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states. Phys. Rev. A 68, 062107 (2003)MathSciNetADSCrossRefGoogle Scholar
  8. CL04.
    Chen P.-X., Li C.-Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)MathSciNetADSCrossRefGoogle Scholar
  9. CLM+12.
    Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). http://arxiv.org/abs/1210.4583 [quant-ph], 2012
  10. CLM+13.
    Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: Interpolatability distinguishes LOCC from separable von Neumann measurements. http://arxiv.org/abs/1306.5992.pdf [quant-ph], 2013
  11. Coh07.
    Cohen S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)MathSciNetADSCrossRefGoogle Scholar
  12. Coh08.
    Cohen S.M.: Understanding entanglement as resource: Locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)ADSCrossRefGoogle Scholar
  13. Coh11.
    Cohen S.M.: When a quantum measurement can be implemented locally, and when it cannot. Phys. Rev. A 84, 052322 (2011)ADSCrossRefGoogle Scholar
  14. Cro12.
    Croke, S.: There is no non-local information in a single qubit. In: APS Meeting Abstracts, page 30011, Feb 2012Google Scholar
  15. CY01.
    Chen Y.-X., Yang D.: Optimal conclusive discrimination of two nonorthogonal pure product multipartite states through local operations. Phys. Rev. A 64, 064303 (2001)ADSCrossRefGoogle Scholar
  16. CY02.
    Chen Y.-X., Yang D.: Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications. Phys. Rev. A 65, 022320 (2002)ADSCrossRefGoogle Scholar
  17. DFJY07.
    Duan R., Feng Y., Ji Z., Ying M.: Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett. 98, 230502 (2007)ADSCrossRefGoogle Scholar
  18. DFXY09.
    Duan R., Feng Y., Xin Y., Ying M.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theor. 55, 1320–1330 (2009)MathSciNetCrossRefGoogle Scholar
  19. DMS+03.
    DiVincenzo D.P., Mor T., Shor P.W., Smolin J.A., Terhal B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  20. DR04.
    De Rinaldis S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)MathSciNetADSCrossRefGoogle Scholar
  21. DXY10.
    Duan R., Xin Y., Ying M.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)ADSCrossRefGoogle Scholar
  22. Fan04.
    Fan H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)ADSCrossRefGoogle Scholar
  23. FS09.
    Feng Y., Shi Y.: Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Inf. Theor. 55, 2799–2806 (2009)MathSciNetCrossRefGoogle Scholar
  24. GKR+01.
    Ghosh S., Kar G., Roy A., Sen(De) A., Sen U.: Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001)MathSciNetADSCrossRefGoogle Scholar
  25. GKRS04.
    Ghosh S., Kar G., Roy A., Sarkar D.: Distinguishability of maximally entangled states. Phys. Rev. A 70, 022304 (2004)MathSciNetADSCrossRefGoogle Scholar
  26. GV01.
    Groisman B., Vaidman L.: Nonlocal variables with product-state eigenstates. J. Phys. A: Math. Gen. 34(35), 6881 (2001)MathSciNetADSCrossRefMATHGoogle Scholar
  27. Hel76.
    Helstrom, C.W.: Quantum Detection and Estimation theory. Mathematics in science and engineering. Academic Press (1976)Google Scholar
  28. HM03.
    Hillery M., Mimih J.: Distinguishing two-qubit states using local measurements and restricted classical communication. Phys. Rev. A 67, 042304 (2003)ADSCrossRefGoogle Scholar
  29. HMM+06.
    Hayashi M., Markham D., Murao M., Owari M., Virmani S.: Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett. 96, 040501 (2006)MathSciNetADSCrossRefGoogle Scholar
  30. HSSH03.
    Horodecki M., Sen(De) A., Sen U., Horodecki K.: Local indistinguishability: More nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)ADSCrossRefGoogle Scholar
  31. JCY05.
    Ji Z., Cao H., Ying M.: Optimal conclusive discrimination of two states can be achieved locally. Phys. Rev. A 71, 032323 (2005)ADSCrossRefGoogle Scholar
  32. KKB11.
    Kleinmann M., Kampermann H., Bruß D.: Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm. Phys. Rev. A 84, 042326 (2011)ADSCrossRefGoogle Scholar
  33. Koa09.
    Koashi M.: On the irreversibility of measurements of correlations. J. Phy. Conf. Series 143(1), 012007 (2009)ADSCrossRefGoogle Scholar
  34. KTYI07.
    Koashi, M., Takenaga, F., Yamamoto, T., Imoto, N.: Quantum nonlocality without entanglement in a pair of qubits. http://arxiv.org/abs/0709.3196 [quant-ph], 2007
  35. Nat05.
    Nathanson M.: Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases. J. Math. Phy. 46(6), 062103 (2005)MathSciNetADSCrossRefGoogle Scholar
  36. NC06.
    Niset J., Cerf N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)ADSCrossRefGoogle Scholar
  37. VSPM01.
    Virmani S., Sacchi M.F., Plenio M.B., Markham D.: Optimal local discrimination of two multipartite pure states. Phy. Let. A 288(2), 62–68 (2001)MathSciNetADSCrossRefMATHGoogle Scholar
  38. Wat05.
    Watrous J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)ADSCrossRefGoogle Scholar
  39. WH02.
    Walgate J., Hardy L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)MathSciNetADSCrossRefGoogle Scholar
  40. WSHV00.
    Walgate J., Short A.J., Hardy L., Vedral V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972–4975 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrew M. Childs
    • 1
  • Debbie Leung
    • 1
  • Laura Mančinska
    • 1
  • Maris Ozols
    • 1
  1. 1.Department of Combinatorics & Optimization, and Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada

Personalised recommendations