Advertisement

Communications in Mathematical Physics

, Volume 322, Issue 1, pp 149–166 | Cite as

How to Add a Boundary Condition

  • Sebastiano Carpi
  • Yasuyuki Kawahigashi
  • Roberto Longo
Article

Abstract

Given a conformal QFT local net of von Neumann algebras \({\mathcal {B}_2}\) on the two-dimensional Minkowski spacetime with irreducible subnet \({\mathcal {A} \otimes \mathcal {A}}\), where \({\mathcal {A}}\) is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to \({\mathcal {B}_2}\): we provide a procedure to construct a Boundary CFT net \({\mathcal {B}}\) of von Neumann algebras on the half-plane x >  0, associated with \({\mathcal {A}}\), and locally isomorphic to \({\mathcal {B}_2}\). All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of \({\mathcal {B}_2}\) to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S 1.

Keywords

Unitary Representation Double Cone Minkowski Plane Vacuum Vector Vacuum Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bischoff M.: Models in Boundary Quantum Field Theory associated with Lattices and Loop Group Models. Commun. Math. Phys. 315, 827–858 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bischoff M., Tanimoto Y.: Construction of wedge-local nets of observables through Longo-Witten endomorphisms. II. Commun. Math. Phys. 317, 667–695 (2013)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    Brunetti R., Guido D., Longo R.: Modular structure and duality in conformal Quantum Field Theory. Commun. Math. Phys. 156, 201–219 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. I. Commun. Math. Phys. 309, 703–735 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II. Commun. Math. Phys. 315, 771–802 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Cardy J.L.: Conformal invariance and surface critical behaviour. Nucl. Phys. B 240, 514–532 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Cardy J.L.: Boundary Conditions, Fusion Rules and the Verlinde Formula. Nucl. Phys. B 324, 581–596 (1989)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Carpi S., Conti R., Hillier R., Weiner M.: Representations of conformal nets, universal C*-algebras and K-theory. Commun. Math. Phys. 320, 275–300 (2013)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 73, 493–536 (1984)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Fredenhagen, K.: Generalization of the theory of superselection sectors. In: “The Algebraic Theory of Superselection Sectors”. D. Kastler, ed, Singapore: World Scientific, 1990Google Scholar
  13. 13.
    Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Guido D., Longo R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148, 521–551 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11–35 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Izumi M.: Inclusions of simple C*-algebras. J. Reine Angew. Math. 547, 97–138 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c <  1. Ann. of Math. 160, 493–522 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kawahigashi Y., Longo R.: Classification of two-dimensional local conformal nets with c <  1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244, 63–97 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Kawahigashi Y., Longo R., Pennig U., Rehren K.-H.: The classification of non-local chiral CFT with c <  1. Commun. Math. Phys. 271, 375–38 (2007)Google Scholar
  22. 22.
    Kong L., Runkel I.: Cardy Algebras and Sewing Constraints, I. Commun. Math. Phys. 292, 871–912 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Longo, R.: “Lectures on Conformal Nets”. Preliminary lecture notes that are available at http://www.mat.uniroma2.it/~ongo/Lecture%20Notes.html. The first part is published as follows: Longo, R.: Real Hilbert subspaces, modular theory, \({SL(2, \mathbb {R})}\) and CFT. In: “Von Neumann algebras in Sibiu”, Theta 2008, pp. 33–91
  25. 25.
    Longo R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126, 217–247 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Longo R.: A duality for Hopf algebras and subfactors. I. Commun. Math. Phys. 159, 133–150 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Longo R.: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237, 7–30 (2003)MathSciNetADSzbMATHGoogle Scholar
  28. 28.
    Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Longo R., Rehren K.-H.: Local fields in boundary CFT. Rev. Math. Phys. 16, 909–960 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Longo R., Rehren K.-H.: How to remove the boundary in CFT, an operator algebraic procedure. Commun. Math. Phys. 285, 1165–1182 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Longo R., Rehren K.-H.: Boundary Quantum Field Theory on the interior of the Lorentz hyperboloid. Commun. Math. Phys. 311, 769–785 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Longo R., Witten E.: An algebraic construction of boundary QFT. Commun. Math. Phys. 303, 213–232 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Popa, S.: Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in Mathematics, 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by Providence, RI: Amer. Math. Soc. 1995Google Scholar
  34. 34.
    Takesaki, M.: “Theory of Operator Algebras”. New York: Springer, I 1979; II and III 2003Google Scholar
  35. 35.
    Tanimoto Y.: Construction of wedge-local nets of observables through Longo-Witten endomorphisms. Commun. Math. Phys. 314, 443–469 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Watatani, Y.: Index for C*-subalgebras. Mem. Amer. Math. Soc. 83, no. 424, (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastiano Carpi
    • 1
  • Yasuyuki Kawahigashi
    • 2
    • 3
  • Roberto Longo
    • 4
  1. 1.Dipartimento di EconomiaUniversità di Chieti-Pescara “G. d’Annunzio”PescaraItaly
  2. 2.Department of Mathematical SciencesThe University of TokyoKomabaJapan
  3. 3.Kavli IPMU (WPI), The University of TokyoKashiwaJapan
  4. 4.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations