Communications in Mathematical Physics

, Volume 322, Issue 1, pp 95–126 | Cite as

Quantum Lump Dynamics on the Two-Sphere



It is well known that the low-energy classical dynamics of solitons of Bogomol’nyi type is well approximated by geodesic motion in \({{\sf M}_n}\), the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction \({\psi : {\sf M}_n \rightarrow \mathbb{C}}\) evolves according to the Hamiltonian \({H_0 = \frac{1}{2} \triangle}\), where \({\triangle}\) is the Laplacian on \({{\sf M}_n}\) . Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including \({\kappa}\), the scalar curvature of \({{\sf M}_n}\), and \({\fancyscript{C}}\), the n-soliton Casimir energy, which are usually difficult or impossible to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H 0 and two corrections to it suggested by work of Moss and Shiiki, namely \({H_1 = H_0 + \frac{1}{4} \kappa}\) and \({H_2 = H_1 + \fancyscript{C}}\), in the simple but nontrivial case of a single \({\mathbb{C}P^1}\) lump moving on the two-sphere. Here \({{\sf M}_1 = {\sf Rat}_1}\), a noncompact kähler 6-manifold invariant under an \({SO(3)\times SO(3)}\) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. By exploiting the diffeomorphism \({{\sf Rat}_1\cong TSO(3)}\), a hidden isometry of \({{\sf Rat}_1}\) is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on an SO(3) submanifold of \({{\sf Rat}_1}\), using standard results from harmonic map theory and zeta function regularization, and approximated numerically on the rest of \({{\sf Rat}_1}\). The lowest 19 eigenvalues of H i are found, and their spin-isospin and parity compared for i =  0, 1, 2. It is found that the curvature corrections in H 1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H 2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H 1 and H 2 is reduced when the target sphere is made smaller.


Soliton Modulus Space Energy Eigenvalue Jacobi Operator Casimir Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. New York: Dover Publications, tenth edition, 1972Google Scholar
  2. 2.
    Adkins G.S., Nappi C.R., Witten E.: Static properties of nucleons in the Skyrme model. Nucl. Phys. B 228, 552–584 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    Baptista J.M.: Some special Kähler metrics on \({SL(2,\mathbb{C})}\) and their holomorphic quantization. J. Geom. Phys. 50, 1–27 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Battye R.A., Manton N.S., Sutcliffe P.M., Wood S.W.: Light nuclei of even mass number in the Skyrme model. Phys. Rev. C 80, 034323–034338 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Besse, A.L.: Einstein Manifolds. Berlin: Springer-Verlag, 2002Google Scholar
  6. 6.
    Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Berlin Heidelberg-NewYork: Springer-Verlag, 1971Google Scholar
  7. 7.
    Bizon P., Chmaj T., Tabor Z.: Formation of singularities for equivariant (2 + 1)-dimensional wave maps into the 2-sphere. Nonlinearity 14, 1041–1053 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Edmonds, E.R.: Angular Momentum in Quantum Mechanics. Princeton, NJ: Princeton University Press, 1960Google Scholar
  9. 9.
    Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. Singapore: World Scientifique, 1994Google Scholar
  10. 10.
    Faddeev, L.D.: Quantisation of solitons. Preprint IAS Print-75-QS70, Princeton, 1975Google Scholar
  11. 11.
    Faddeev L.D., Niemi A.J.: Knots and particles. Nature 387, 58–61 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Finkelstein D., Rubinstein J.: Connection between spin, statistics, and kinks. J. Math. Phys. 9, 1762–1779 (1968)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Gibbons G.W., Manton N.S.: Classical and quantum dynamics of BPS monopoles. Nucl. Phys. B 274, 183–224 (1986)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Haskins M., Speight J.M.: The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps. J. Math. Phys. 44, 3470–94 (2003)Google Scholar
  15. 15.
    Irwin P.: Zero mode quantization of multi - Skyrmions. Phys. Rev. D 61, 114024–114057 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Knapp, A.W.: Representation Theory of Semisimple Groups. Princeton NJ: Princeton University Press. 1986, p. 17Google Scholar
  17. 17.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. New York: John Wiley, 1996 Volume II, p. 167Google Scholar
  18. 18.
    Krusch S.: Homotopy of rational maps and the quantization of skyrmions. Ann. Phys. 304, 103–127 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Krusch S., Speight J.M.: Fermionic quantization of Hopf solitons. Commun. Math. Phys. 264, 391–410 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Lichnerowicz A.: Applications harmoniques et variétés kähleriennes. Symp. Math. Bologna 3, 341–402 (1970)ADSGoogle Scholar
  21. 21.
    Linhart J.M., Sadun L.A.: Fast and slow blowup in the S 2 σ model and the (4 + 1)-dimensional Yang-Mills model. Nonlinearity 15, 219–238 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Manton N.S.: A remark on the scattering of BPS monopoles. Phys. Lett. 110, 54–56 (1982)MathSciNetMATHGoogle Scholar
  23. 23.
    Manton, N.S., Sutcliffe, P.M.: Topological Solitons. Cambridge: Cambridge University Press, 2004Google Scholar
  24. 24.
    McGlade, J.A.: The Dynamics of Topological Solitons within the Geodesic Approximation. PhD Thesis, University of Leeds, 2005Google Scholar
  25. 25.
    McGlade J.A., Speight J.M.: Slow equivariant lump dynamics on the two-sphere. Nonlinearity 19, 441–452 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Meier F., Walliser H.: Quantum Corrections to Baryon Properties in Chiral Soliton Models. Phys. Rept. 289, 383–448 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Moss I.G.: Soliton vacuum energies and the CP(1) model. Phys. Lett. B 460, 103–106 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Moss I.G., Shiiki N.: Quantum mechanics on moduli spaces. Nucl. Phys. B 565, 345–362 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Moss, I.G., Shiiki, N., Torii, T.: Vacuum energy of CP(1) solitons. (Preprint: arXiv:hep-ph/0103240, 2001)Google Scholar
  30. 30.
    Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford: Oxford University Press, 1993Google Scholar
  31. 31.
    Rodnianski I., Sterbenz J.: On the Formation of Singularities in the Critical O(3) Sigma-Model. Ann. Math. 172, 187–242 (2010)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ruback, P.J.: Sigma model solitons and their moduli space metrics. Commun. Math. Phys. 116, 645–658Google Scholar
  33. 33.
    Sadun L., Speight J.M.: Geodesic incompleteness in the \({\mathbb{C}P^1}\) model on a compact Riemann surface. Lett. Math. Phys. 43, 329–334 (1998)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Smith R.T.: The second variation formula for harmonic mappings. Proc. Amer. Math. Soc. 47, 229–36 (1975)Google Scholar
  35. 36.
    Speight J.M.: Low energy dynamics of a \({\mathbb{C}P^1}\) lump on the sphere. J. Math. Phys. 36, 796–813 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  36. 37.
    Speight J.M.: The L 2 geometry of spaces of harmonic maps S 2S 2 and \({\mathbb{R}P^2 \rightarrow \mathbb{R}P^2}\). J. Geom. Phys. 47, 343–368 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 38.
    Stuart D.: The geodesic approximation for the Yang-Mills-Higgs equations. Commun. Math. Phys. 166, 149–90 (1994)Google Scholar
  38. 40.
    Urakawa, H.: Calculus of Variations and Harmonic Maps. Providence, RI: Amer. Math. Soc., 1993Google Scholar
  39. 41.
    Willmore, T.J.: Riemannian Geometry. Oxford: Clarendon Press, 1993, p. 57Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Actuarial ScienceUniversity of KentCanterburyEngland
  2. 2.School of Mathematics, University of LeedsLeedsEngland

Personalised recommendations