Communications in Mathematical Physics

, Volume 320, Issue 1, pp 173–198 | Cite as

The Cauchy Problems for Einstein Metrics and Parallel Spinors

Article

Abstract

The restriction of a parallel spinor on some spin manifold \({\mathcal{Z}}\) to a hypersurface \({M \subset \mathcal{Z}}\) is a generalized Killing spinor on M. We show, conversely, that in the real analytic category, every spin manifold (M, g) carrying a generalized Killing spinor ψ can be isometrically embedded as a hypersurface in a spin manifold carrying a parallel spinor whose restriction to M is ψ. We also answer negatively the corresponding question in the smooth category.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammann B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Diff. Geom. Appl. 18, 21–32 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ammann B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Comm. Anal. Geom. 17, 429–479 (2009)MathSciNetMATHGoogle Scholar
  3. 3.
    Ammann, B.: A variational problem in conformal spin geometry. Habilitationsschrift. Universität Hamburg, 2003Google Scholar
  4. 4.
    Ammann, B., Dahl, M., Hermann, A., Humbert, E.: Mass endomorphism, surgery and perturbations. Ann. Inst. Fourier. http://arxiv.org/abs/1009.5618v1 [math.D6], 2010 (to appear)
  5. 5.
    Ammann B., Dahl M., Humbert E. : Harmonic spinors and local deformations of the metric. Math. Res. Lett. 18, 927–936 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    Ammann B., Grosjean J.-F., Humbert E., Morel B.: A spinorial analogue of Aubin’s inequality. Math. Z. 260, 127–151 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ammann B., Humbert E., Morel B.: Mass endomorphism and spinorial Yamabe type problems. Comm. Anal. Geom. 14, 163–182 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Ammann, B., Jammes, P.: The supremum of conformally covariant eigenvalues in a conformal class. In: Proc. Conf. Leeds on the occasion of J. Woods 60th birthday, 2009, Variational Problems in Differential Geometry R. Bielawski, K. Houston, M. Speight, eds., London Math. Soc. Lect. Notes Ser. 394, London: Lond. Math. Soc., 2011, pp. 1–23Google Scholar
  9. 9.
    Anderson M.T., Herzlich M.: Unique continuation results for Ricci curvature and applications. J. Geom. Phys. 58(2), 179–207 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Aubin T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pur. Appl., IX. Ser. 55, 269–296 (1976)MathSciNetMATHGoogle Scholar
  11. 11.
    Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistor and Killing Spinors on Riemannian Manifolds. Stuttgart-Leipzig: Teubner-Verlag, 1991Google Scholar
  12. 12.
    Bär C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)ADSMATHCrossRefGoogle Scholar
  13. 13.
    Bär C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bär C.: Zero sets of solutions to semilinear elliptic systems of first order. Invent. Math. 138(1), 183–202 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Bär C., Gauduchon P., Moroianu A.: Generalized Cylinders in Semi-Riemannian and Spin Geometry. Math. Z. 249, 545–580 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Besse, A.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10, Berlin: Springer-Verlag, 1987Google Scholar
  17. 17.
    Biquard O.: Continuation unique à partir de l’infini conforme pour les métriques d’Einstein. Math. Res. Lett. 15(6), 1091–1099 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Booss-Bavnbek B., Marcolli M., Wang B.-L.: Weak UCP and perturbed monopole equations. Internat. J. Math. 13(9), 987–1008 (2002)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bourguignon J.P., Gauduchon P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Bryant, R.: Non-embedding and non-extension results in special holonomy. In: The many facets of geometry – A tribute to Nigel Hitchin, Oxford: Oxford Univ. Press, 2010, pp. 346–367Google Scholar
  21. 21.
    Conti D.: Embedding into manifolds with torsion. Math. Z. 268(3-4), 725–751 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Conti D., Salamon S.: Reduced holonomy, hypersurfaces and extensions. Int. J. Geom. Meth. Mod. Phys. 3(5-6), 899–912 (2006)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Conti D., Salamon S.: Generalized Killing spinors in dimension 5. Trans. Amer. Math. Soc. 359(11), 5319–5343 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Dieudonné, J.: Éléments d’analyse. Tome IV: Chapitres XVIII à XX, Cahiers Scientifiques, Fasc. XXXIV, Paris: Gauthier-Villars, 1971Google Scholar
  25. 25.
    DeTurck D.: The Cauchy problem for Lorentz metrics with prescribed Ricci curvature. Compositio Math. 48(3), 327–349 (1983)MathSciNetMATHGoogle Scholar
  26. 26.
    DeTurck, D.: Existence of metrics with prescribed Ricci curvature: local theory. Invent. Math. 65, no. 1, 179–207, (1981/82)Google Scholar
  27. 27.
    DeTurck D., Kazdan J.: Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14(3), 249–260 (1981)MathSciNetMATHGoogle Scholar
  28. 28.
    Fefferman, C.L., Graham, C.R.: Conformal invariants. Asterisque, vol. hors série, Paris: Soc. Math. France, 1985, pp 95–116Google Scholar
  29. 29.
    Fourès-Bruhat Y.: Résolution du problème de Cauchy pour des équations hyperboliques du second ordre non linéaires. Bull. Soc. Math. France 81, 225–288 (1953)MathSciNetMATHGoogle Scholar
  30. 30.
    Friedrich Th.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Golubitsky, M. Guillemin, V.: Stable mappings and their singularities. Graduate Texts in Mathematics 14, New York-Heidelberg: Springer-Verlag, 1973Google Scholar
  32. 32.
    Grauert H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. (2) 68, 460–472 (1958)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hermann A.: Generic metrics and the mass endomorphism on spin 3-manifolds. Ann. Global Anal. Geom. 37, 163–171 (2010)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hermann, A.: Dirac eigenspinors for generic metrics. PhD thesis, Universität Regensburg, 2012, http://arxiv.org/abs/1201.5771v3 [math.D6], 2012
  35. 35.
    Hermann, A.: Zero sets of eigenspinors for generic metrics. http://arxiv.org/abs/1208.1414v1 [math.D6], 2012
  36. 36.
    Hijazi O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys. 104, 151–162 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Hijazi O.: Première valeur propre de l’opérateur de Dirac et nombre de Yamabe. C. R. Acad. Sci. Paris 313, 865–868 (1991)MathSciNetMATHGoogle Scholar
  38. 38.
    Hijazi, O.: Spectral properties of the Dirac operator and geometrical structures. Ocampo, Hernan (ed.), In: Geometric methods for quantum field theory. Proc. summer school, Villa de Leyva, Colombia, 1999, Singapore: World Scientific, 2001, pp. 116–169Google Scholar
  39. 39.
    Hirsch, M.W.: Differential topology. Graduate Texts in Mathematics, 33, Berlin-Heidelberg-New york: Springer-Verlag, 1976Google Scholar
  40. 40.
    Hitchin, N.: Stable forms and special metrics. In: Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math. 288, Providence, RI: Amer. Math. Soc. 2001, pp. 70–89Google Scholar
  41. 41.
    Kim E.C.: A local existence theorem for the Einstein-Dirac equation. J. Geom. Phys. 44, 376–405 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Koiso N.: Hypersurfaces of Einstein manifolds. Ann. Sci. École Norm. Sup. 14(4), 433–443 (1981)MathSciNetMATHGoogle Scholar
  43. 43.
    Lawn M.-A., Roth J.: Isometric immersions of hypersurfaces in 4-dimensional manifolds via spinors. Diff. Geom. Appl. 28(2), 205–219 (2010)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Lee J.M., Parker T.H.: The Yamabe problem. Bull. Amer. Math. Soc. 17, 37–91 (1987)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Lott J.: Eigenvalue bounds for the Dirac operator. Pacific J. Math. 125, 117–126 (1986)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Morel, B.: The energy-momentum tensor as a second fundamental form. http://arxiv.org/abs/math.DG/0302205v1 [math.D6], 2003
  47. 47.
    Morel, B.: Surfaces in \({\mathbb{S}^3}\) and \({\mathbb{H}^3}\) via spinors. Actes de Séminaire de Théorie Spectrale et Géométrie, 23, Anné 2004–2005, 131–144, Univ. Grenoble I, Saint-Martin-d’Hères, 2005, http://arxiv.org/abs/math./0204090v2 [math.D6], 2003
  48. 48.
    Morrey C.B. Jr: On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior. Amer. J. Math. 80, 198–218 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  49. 49.
    Morrey, C.B. Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, 130, New York: Springer Verlag, 1966Google Scholar
  50. 50.
    Obata M.: The conjectures on conformal transformations of Riemannian manifolds. J. Diff. Geom. 6, 247–258 (1971/72)MathSciNetGoogle Scholar
  51. 51.
    Pfäffle, F.: Eigenwertkonvergenz für Dirac-Operatoren. Ph.D. thesis, University of Hamburg, Germany, 2002, Aachen: Shaker Verlag, 2003Google Scholar
  52. 52.
    Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)MathSciNetMATHGoogle Scholar
  53. 53.
    Schoen R., Yau S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bernd Ammann
    • 1
  • Andrei Moroianu
    • 2
  • Sergiu Moroianu
    • 3
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Université de Versailles-St Quentin, Laboratoire de Mathématiques, UMR 8100 du CNRSVersaillesFrance
  3. 3.Institutul de Matematică al Academiei RomâneBucharestRomania

Personalised recommendations