Communications in Mathematical Physics

, Volume 320, Issue 2, pp 395–424 | Cite as

Well-Posedness and Uniform Bounds for a Nonlocal Third Order Evolution Operator on an Infinite Wedge

  • Hans Knüpfer
  • Nader Masmoudi


We investigate regularity and well-posedness for a fluid evolution model in the presence of a three-phase contact point. We consider a fluid evolution governed by Darcy’s Law. After linearization, we obtain a nonlocal third order operator which contains the Dirichlet-Neumann operator on the wedge with opening angle \({\epsilon > 0}\) . We show well-posedness and regularity for this linear evolution equation. In the limit of vanishing opening angle, we show the convergence of solutions to a fourth order degenerate parabolic operator, related to the thin-film equation. In the course of the analysis, we introduce and characterize a new type of sum of weighted Sobolev spaces which are suitable to capture the singular limit as \({\epsilon \to 0}\) . In particular, the nature of the problem requires the use of techniques that are adapted to the problem in the singular domain as well as the degenerate limit problem.


Contact Angle Contact Point Order Operator Absolute Convergence Weighted Sobolev Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazaliy B.V., Friedman A.: The Hele-Shaw problem with surface tension in a half-plane. J. Diff. Eqs. 216(2), 439–469 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bazaliy B.V., Friedman A.: The Hele-Shaw problem with surface tension in a half-plane: a model problem. J. Diff. Eqs. 216(2), 387–438 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bear, J.: Dynamics of Fluids in Porous Media. New York: Dover Publications, 1972Google Scholar
  4. 4.
    Chen X.: The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Rat. Mech. Anal. 123(2), 117–151 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Constantin P., Pugh M.: Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6(3), 393–415 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Daskalopoulos P., Hamilton R.: Regularity of the free boundary for the porous medium equation. J. Amer. Math. Soc. 11(4), 899–965 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    De Gennes PG.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Escher J., Simonett G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Diff. Eqs. 2(4), 619–642 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Escher, J., Simonett, G.: Classical solutions for the quasi-stationary Stefan problem with surface tension. In: Differential equations, asymptotic analysis, and mathematical physics (Potsdam, 1996), Volume 100 of Math. Res., Berlin: Akademie Verlag, 1997, pp. 98–104Google Scholar
  10. 10.
    Escher J., Simonett G.: A center manifold analysis for the Mullins-Sekerka model. J. Diff. Eqs. 143(2), 267–292 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Friedman A., Reitich F.: Nonlinear stability of a quasi-static Stefan problem with surface tension: a continuation approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(2), 341–403 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Giacomelli L., Knüpfer H.: A free boundary problem of fourth order: classical solutions in weighted H ölder spaces. Comm. Par. Diff. Eqs. 35(11), 2059–2091 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Giacomelli L., Knüpfer H., Otto F.: Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Diff. Eqs. 245(6), 1454–1506 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Giacomelli L., Otto F.: Variational formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. Par. Diff. Eqs. 13(3), 377–403 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Giacomelli L., Otto F.: Rigorous lubrication approximation. Interfaces Free Bound. 5(4), 483–529 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Grisvard, P.: Elliptic problems in nonsmooth domains. Volume 24 of Monographs and Studies in Mathematics. Boston, MA: Pitman (Advanced Publishing Program), 1985Google Scholar
  17. 17.
    Knüpfer H.: Navier slip thin–film equation for partial wetting. Comm. Pure Appl. Math. 64(9), 1263–1296 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Koch, H.: Non–Euclidean singular integrals and the porous medium equation. PhD thesis, Dortmund, 1999Google Scholar
  19. 19.
    Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic boundary value problems in domains with point singularities. Volume 52 of Mathematical Surveys and Monographs. Providence, RI: Am. Math. Soc., 1997Google Scholar
  20. 20.
    McGeough J.A., Rassmussen H.: On the derivation of the quasi-steady model in electrochemical machining. J. Inst. Math. Appl. 13(1), 13–21 (1974)CrossRefGoogle Scholar
  21. 21.
    Miranda, C.: Partial differential equations of elliptic type. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2. New York: Springer-Verlag, 1970, Second revised edition, translated from the Italian by Zane C. MottelerGoogle Scholar
  22. 22.
    Prokert G.: Existence results for Hele-Shaw flow driven by surface tension. Eur. J. Appl. Math. 9(2), 195–221 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pruess, J., Simonett, G.: Maximal regularity for degenerate evolution equations with an exponential weight function. In: Functional analysis and evolution equations. The Günter Lumer Volume, Basel: Birkhäuser Verlag, 2007, pp 531–545Google Scholar
  24. 24.
    Reed, M., Simon, B.: Methods of modern mathematical physics. I. New York: Academic Press Inc., second edition, 1980Google Scholar
  25. 25.
    Rubenstein, L.I.: The Stefan problem. Translations of Mathematical Monographs, Vol. 27, Providence, RI: Amer. Math. Soc., 1971, translated from the Russian by A. D. SolomonGoogle Scholar
  26. 26.
    Tabeling, P.: Growth and form : nonlinear aspe. Berlin-Heidelberg, New York: Springer, 1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations