Advertisement

Communications in Mathematical Physics

, Volume 322, Issue 1, pp 207–227 | Cite as

A General Approximation of Quantum Graph Vertex Couplings by Scaled Schrödinger Operators on Thin Branched Manifolds

  • Pavel Exner
  • Olaf Post
Article

Abstract

We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schrödinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it. The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently ‘lifted’ to the manifold. For the corresponding operator a norm-resolvent convergence is proved, with the natural identification map, as the tube diameters tend to zero.

Keywords

Manifold Quadratic Form Photonic Crystal Graph Topology Quantum Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACF07.
    Albeverio S., Cacciapuoti C., Finco D.: Coupling in the singular limit of thin quantum waveguides. J. Math. Phys. 48, 032103 (2007)MathSciNetADSCrossRefGoogle Scholar
  2. CE07.
    Cacciapuoti C., Exner P.: Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide. J. Phys. A: Math. Theor. 40, L511–L523 (2007)MathSciNetADSCrossRefGoogle Scholar
  3. CE04.
    Cheon T., Exner P.: An approximation to δ′ couplings on graphs. J. Phys. A: Math. Gen. 37, L329–L335 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. CET10.
    Cheon T., Exner P., Turek O.: Approximation of a general singular vertex coupling in quantum graphs. Ann. Physics 325, 548–578 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. CTF04.
    Cheon T., Tsutsui I., Fülöp T.: Quantum abacus. Phys. Lett. A330, 338–342 (2004)ADSGoogle Scholar
  6. CET11.
    Cheon T., Exner P., Turek O.: Inverse scattering problem for quantum graph vertices. Phys. Rev. A83, 062715 (2011)ADSGoogle Scholar
  7. CS98.
    Cheon T., Shigehara T.: Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A243, 111–116 (1998)ADSGoogle Scholar
  8. CCL06.
    Chien H.-T., Chen C.-C., Luan P.-G.: Photonic crystal beam splitters. Optics Commun. 259, 873–875 (2006)ADSCrossRefGoogle Scholar
  9. CdV86.
    Colin de Verdière Y.: Sur la multiplicité de la première valeur propre non nulle du laplacien. Comment. Math. Helv. 61, 254–270 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. DC10.
    Dell’Antonio G., Costa E.: Effective Schrödinger dynamics on \({\varepsilon}\) -thin Dirichlet waveguides via quantum graphs I: star-shaped graphs. J. Phys. A: Math. Theor. 43, 474014 (2010)MathSciNetCrossRefGoogle Scholar
  11. EKK+08.
    Exner, P., Keating, J. P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on graphs and its applications, Proc. Symp. Pure Math., vol. 77, Providence, R.I., Amer. Math. Soc., 2008Google Scholar
  12. ENZ01.
    Exner P., Neidhardt H., Zagrebnov V.: Potential approximations to δ′: an inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys. 224, 593–612 (2001)MathSciNetADSCrossRefGoogle Scholar
  13. EP05.
    Exner P., Post O.: Convergence of spectra of graph-like thin manifolds. J. Geom. Phys. 54, 77–115 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. EP09.
    Exner, P., Post, O.: Approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds. J. Phys. A: Math. Theor. 42, 415305, (22pp) (2009)Google Scholar
  15. EŠ89.
    Exner, P., Šeba, P.: Electrons in semiconductor microstructures: a challenge to operator theorists. In: “Schrödinger Operators, Standard and Nonstandard”, Singapore: World Scientific, 1989, pp. 79–100Google Scholar
  16. ET07.
    Exner P., Turek O.: Approximations of singular vertex couplings in quantum graphs. Rev. Math. Phys. 19, 571–606 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. FW93.
    Freidlin M. I., Wentzell A. D.: Diffusion processes on graphs and the averaging principle. Ann. Probab. 21, 2215–2245 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Gr08.
    Grieser D.: Spectra of graph neighborhoods and scattering. Proc. Lond. Math. Soc. (3) 97, 718–752 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Gri08b.
    Grieser, D.: Thin tubes in mathematical physics, global analysis and spectral geometry. In: [EKK+08], pp. 565–593Google Scholar
  20. Ha00.
    Harmer M.: Hermitian symplectic geometry and the factorization of the scattering matrix on graphs. J. Phys. A 33, 9015–9032 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. KS99.
    Kostrykin V., Schrader R.: Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen. 32, 595–630 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Ku04.
    Kuchment P.: Quantum graphs: I. Some basic structures. Waves in Random Media 14, S107–S128 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. KP13.
    Kuchment, P., Post, O.: Creating vertex conditions by geometry. In preparationGoogle Scholar
  24. KuZ01.
    Kuchment P., Zeng H.: Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl. 258, 671–700 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Me78.
    Mehran R.: Calculation of microstrip bends and Y-junctions with arbitrary angle. IEEE Transactions on Microwave Theory and Techniques 26, 400–405 (1978)ADSCrossRefGoogle Scholar
  26. MM06.
    Müller J., Müller W.: Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants. Duke Math. J. 133, 259–312 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. MV07.
    Molchanov S., Vainberg B.: Scattering solutions in networks of thin fibers: small diameter asymptotics. Commun. Math. Phys. 273, 533–559 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. P05.
    Post O.: Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case. J. Phys. A: Math. Gen. 38, 4917–4931 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. P06.
    Post O.: Spectral convergence of quasi-one-dimensional spaces. Ann. H. Poincaré 7, 933–973 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  30. P12.
    Post O.: Spectral analysis on graph-like spaces, Lecture Notes in Mathematics no. 2039, Springer-Verlag, Berlin, 2012Google Scholar
  31. RS01.
    Rubinstein, J., Schatzman, M.: Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. II. Convergence of the Ginzburg-Landau functional. Arch. Ratn. Mech. Anal. 160, 271–308, 309–324 (2001)Google Scholar
  32. RuS53.
    Ruedenberg K., Scherr C.W.: Free-electron network model for conjugated systems, I. Theory. J. Chem. Phys. 21, 1565–1581 (1953)ADSCrossRefGoogle Scholar
  33. Sa00.
    Saito, Y.: The limiting equation for Neumann Laplacians on shrinking domains. Electron. J. Differ. Eqs. 31, 25p. (2000)Google Scholar
  34. TY03.
    Takeda H., Yoshino K.: Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects. Phys. Rev. B67, 073106 (2003)ADSGoogle Scholar
  35. TM07.
    Tanaka A., Miyamoto M.: Quasienergy anholonomy and its application to adiabatic quantum state manipulation. Phys. Rev. Lett. 98, 160407 (2007)ADSCrossRefGoogle Scholar
  36. TN10.
    Tanaka A., Nemoto K.: Adiabatic quantum computation along quasienergies. Phys. Rev. A 81, 022320 (2010)ADSCrossRefGoogle Scholar
  37. ZLW11.
    Zhan L.-l., Li Q., Wang Q.: 1–to–N beam splitter based on photonic crystal branched waveguide structure. Optics & Laser Tech. 43, 1325–1330 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsNPI, Academy of SciencesŘež, PragueCzech Republic
  2. 2.Doppler InstituteCzech Technical UniversityPragueCzech Republic
  3. 3.School of MathematicsCardiff UniversityCardiffUK
  4. 4.Department of Mathematical SciencesDurham UniversityDurhamEngland, UK

Personalised recommendations