Communications in Mathematical Physics

, Volume 318, Issue 2, pp 375–409 | Cite as

Free Molecular Flow with Boundary Effect

Article

Abstract

We study the dissipative effect of the boundary condition in the kinetic theory. We focus our study on the simplest situation of the free molecular flow with diffuse reflection boundary condition and constant boundary temperature, T*. The geometry is also chosen to be the simplest ones, a bounded symmetric domain in \({\mathbb{R}^d}\) : an interval for d = 1, a disk for d = 2, and a ball for d = 3. It is shown that the solution converges to the global Maxwellian with the given boundary temperature T*. We obtain the optimal convergence rates of (t + 1)d. The stochastic formulation of Shih-Hsien Yu is refined and generalized for our analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki K., Golse F.: On the speed of approach to equilibrium for a collisionless gas. Kinet. Relat. Models 4(1), 87–107 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Feller W.: On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grad, H.: Principles of the kinetic theory of gases. Handbuch der Physik, Bd. 12, Berlin-Gottingen-Heidelberg.: Springer-Verlag, 1958, pp. 205–294Google Scholar
  5. 5.
    Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Rati. Mech. Anal. 197(3), 713–809 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Tsuji T., Aoki K., Golse F.: Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall. J. Stat. Phys. 140(3), 518–543 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202, no. 950, iv+141 (2009)Google Scholar
  8. 8.
    Yu S.-H.: Stochastic Formulation for the Initial-Boundary Value Problems of the Boltzmann Equation. Arch. Rati. Mech. Anal. 192, 217–274 (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Sone, Y.: Molecular Gas Dynamics: theory, techniques, and applications, Basel:Birkhäuser Verlag, 2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of MathematicsAcademia SinicaTaipeiR.O.C.
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations