Communications in Mathematical Physics

, Volume 322, Issue 1, pp 127–148 | Cite as

Deformation of LeBrun’s ALE Metrics with Negative Mass

Article

Abstract

In this article we investigate deformations of a scalar-flat Kähler metric on the total space of complex line bundles over \({\mathbb{CP}^1}\) constructed by C. LeBrun. In particular, we find that the metric is included in a one-dimensional family of such metrics on the four-manifold, where the complex structure in the deformation is not the standard one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M., Hitchin N., Singer I.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London, Ser. A 362, 425–461 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Calderbank D., Singer M.: Einstein metrics and complex singularities. Invent. Math. 156, 405–443 (2003)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Donaldson S.K., Friedman R.: Connected sums of self-dual manifolds and deformations of singular spaces. Non-linearlity 2, 197–239 (1989)MathSciNetADSMATHGoogle Scholar
  4. 4.
    Gibbons G.W., Hawking S.W.: Gravitational multi-instantons. Phys. Lett. 78B, 430–432 (1978)ADSGoogle Scholar
  5. 5.
    Hitchin N.: Polygons and gravitons. Math. Proc. Cambridge Philos. Soc. 83, 465–476 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hitchin N.: Twistor spaces, Einstein metrics and isomonodromic deformation. J. Diff. Geom. 42, 30–112 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Honda N.: Equivariant deformations of meromorphic actions on compact complex manifolds. Math. Ann. 319, 469–481 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Honda N.: Equivariant deformations of LeBrun’s self-dual metric with torus action. Proc. Amer. Math. Soc. 135, 495–505 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Honda N.: Self-dual metrics and twenty-eight bitangents. J. Diff. Geom. 75, 175–258 (2007)MathSciNetMATHGoogle Scholar
  10. 10.
    Honda N.: Double solid twistor spaces: the case of arbitrary signature. Invent. Math. 174, 463–504 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Honda N.: Degenerations of LeBrun twistor spaces. Commun. Math. Phys. 301, 749–770 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Kovalev A., Singer M.: Gluing theorems of complete anti-self-dual spaces. Geom. Funct. Anal. 11, 1229–1281 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kreußler B.: On the algebraic dimension of twistor spaces over the connected sum of four complex projective planes. Geom. Dedicata 71, 263–285 (1998)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Diff. Geom. 29, 665–683 (1989)MathSciNetMATHGoogle Scholar
  15. 15.
    LeBrun C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    LeBrun C.: Explicit self-dual metrics on \({\mathbf{CP}^2\#\cdots\#\mathbf{CP}^2}\) . J. Diff. Geom. 34, 223–253 (1991)MathSciNetMATHGoogle Scholar
  17. 17.
    LeBrun C.: Twistors, Kähler Manifolds, and Bimeromorphic Geometry I. J. Amer. Math. Soc. 5, 289–316 (1992)MathSciNetMATHGoogle Scholar
  18. 18.
    Lock, M., Viaclovsky, J.: Anti-self-dual orbifolds with cyclic quotient singularities. http://arXiv.org/abs/1205.4059v1 [math.DG], 2012
  19. 19.
    Pedersen H., Poon Y.S.: Kähler surfaces with zero scalar curvature. Class. Quant. Grav. 7, 1707–1719 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Pedersen H., Poon Y.S.: Self-duality and differentiable structures on the connected sum of complex projective planes. Proc. Amer. Math. Soc. 121, 859–864 (1994)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Pinkham, H.: Deformations of algebraic varieties with \({\mathbb{G}_m}\) action. Astérisque 20, Paris: Société Mathématique de France, 1974Google Scholar
  22. 22.
    Pontecorvo M.: On twistor spaces of anti-self-dual hermitian surfaces. Trans. Amer. Math. Soc. 331, 653–661 (1992)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Poon Y.S.: On the algebraic structure of twistor spaces. J. Diff. Geom. 36, 451–491 (1992)MathSciNetMATHGoogle Scholar
  24. 24.
    Ueno, K.: Classification theory of algebraic varieties and compact complex spaces, Lect. Note Math. 439, Berlin-Heidelberg-New York: Springer, 1975Google Scholar
  25. 25.
    Viaclovsky J.: Monopole metrics and the orbifold Yamabe problem. Ann. Inst. Fourier (Grenoble) 60, 2503–2543 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Viaclovsky, J.: An index theorem on anti-self-dual orbifolds. to appear in Internat. Math. Res. Notices. http://arxiv.org/abs/1202.0578v1 [math.06], 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversityMiyagiJapan

Personalised recommendations