Advertisement

Communications in Mathematical Physics

, Volume 320, Issue 3, pp 783–820 | Cite as

Representations of Super Yang-Mills Algebras

  • Estanislao HerscovichEmail author
Article

Abstract

We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras \({{\rm {Cliff}}_{q}(k) \otimes A_{p}(k)}\), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.

Keywords

Hilbert Series Homogeneous Element Weyl Algebra Primitive Ideal Grade Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry M., Lemaire J.-M.: Zero divisors in enveloping algebras of graded Lie algebras. J. Pure Appl. Alg. 38(2–3), 159–166 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Artin M., Zhang J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228–287 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bavula V., Bekkert V.: Indecomposable representations of generalized Weyl algebras. Comm. Alg. 28(11), 5067–5100 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bell A.D., Musson I.M.: Primitive factors of enveloping algebras of nilpotent Lie superalgebras. J. London Math. Soc. (2) 42(3), 401–408 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berger R., Ginzburg V.: Higher symplectic re ection algebras and non-homogeneous N-Koszul property. J. Alg. 304(1), 577–601 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berger R., Marconnet N.: Koszul and Gorenstein properties for homogeneous algebras. Alg. Rep. Th. 9(1), 67–97 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Berger R., Taillefer R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncom. Geom. 1(2), 241–270 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bergman G.M.: The diamond lemma for ring theory. Adv. in Math. 29(2), 178–218 (1978)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Cohen M., Montgomery S.: Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282(1), 237–258 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Connes A., Dubois-Violette M.: Yang-Mills algebra. Lett. Math. Phys. 61(2), 149–158 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Connes, A., Dubois-Violette, M.: Yang-Mills and some related algebras. In: Rigorous quantum field theory, Progr. Math., Vol. 251, Basel: Birkhäuser, 2007, pp. 65–78Google Scholar
  12. 12.
    Deligne, P., Freed, D.S.: Classical field theory. (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 137–225Google Scholar
  13. 13.
    Deligne, P., Freed, D.S.: Supersolutions. (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 227–355Google Scholar
  14. 14.
    Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73(4), 977–1029 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Ferrero M., Kishimoto K., Motose K.: On radicals of skew polynomial rings of derivation type. J. London Math. Soc. (2) 28(1), 8–16 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fröberg R.: Determination of a class of Poincaré series. Math. Scand. 37(1), 29–39 (1975)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gordon R., Green E.L.: Graded Artin algebras. J. Algebra 76(1), 111–137 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hô Hai P., Kriegk B., Lorenz M.: N-homogeneous superalgebras. J. Noncom. Geom. 2(1), 1–51 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Herscovich E.: The Dixmier map for nilpotent super Lie algebras. Commun. Math. Phy. 313(2), 295–328 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Herscovich E., Solotar A.: Representation theory of Yang-Mills algebras. Ann. of Math. (2) 173(2), 1043–1080 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Herscovich E., Solotar A.: Hochschild and cyclic homology of Yang-Mills algebras. J. Reine Ange. Math. 665, 73–156 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lang, S.: Algebra. 3rd ed., Graduate Texts in Mathematics, Vol. 211, New York: Springer-Verlag, 2002Google Scholar
  23. 23.
    Letzter E.: Primitive ideals in finite extensions of Noetherian rings. J. London Math. Soc. (2) 39(3), 427–435 (1989)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mori I., Minamoto H.: The structure of AS-Gorenstein algebras. Adv. Math. 226(5), 4061–4095 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Movshev, M., Schwarz, A.: Algebraic structure of Yang-Mills theory. In: The unity of mathematics, Progr. Math., Vol. 244, Boston, MA: Birkhäuser Boston, 2006, pp. 473–523; Movshev, M.: Yang-Mills theories in dimesiions 3, 4, 6, 10 and Bar-duality. http://arxiv.org/abs/hep-th/0503165v2, 2005
  26. 26.
    Musson, I.M., Pinczon, G., Ushirobira, R.: Hochschild cohomology and deformations of Clifford-Weyl algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 5, Paper 028, 27 (2009)Google Scholar
  27. 27.
    Piontkovski D.: Coherent algebras and noncommutative projective lines. J. Alg. 319(8), 3280–3290 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Rotman, J.J.: An introduction to homological algebra. 2nd ed., Universitext, New York: Springer, 2009Google Scholar
  29. 29.
    Tanaka J.: On homology and cohomology of Lie superalgebras with coefficients in their finite-dimensional representations. Proc. Japan Acad. Ser. A Math. Sci. 71(3), 51–53 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge: Cambridge University Press, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations