Communications in Mathematical Physics

, Volume 319, Issue 2, pp 501–513

Landauer-Büttiker Formula and Schrödinger Conjecture

Article

Abstract

We study the entropy flux in the stationary state of a finite one-dimensional sample \({\mathcal{S}}\) connected at its left and right ends to two infinitely extended reservoirs \({\mathcal{R}_{l/r}}\) at distinct (inverse) temperatures \({\beta_{l/r}}\) and chemical potentials \({\mu_{l/r}}\) . The sample is a free lattice Fermi gas confined to a box [0, L] with energy operator \({h_{\mathcal{S}, L}= - \Delta + v}\) . The Landauer-Büttiker formula expresses the steady state entropy flux in the coupled system \({\mathcal{R}_l + \mathcal{S} + \mathcal{R}_r}\) in terms of scattering data. We study the behaviour of this steady state entropy flux in the limit \({L \to \infty}\) and relate persistence of transport to norm bounds on the transfer matrices of the limiting half-line Schrödinger operator \({h_\mathcal{S}}\) .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ar.
    Araki, H.: Relative entropy of states of von Neumann algebras. Publ. Res. Inst. Math. Sci. Kyoto Univ. 11, 809 (1975/76)Google Scholar
  2. Av.
    Avila, A.: On the Kotani-Last and Schrödinger conjectures. In preparation, available at http://arxiv.org/abs/1210.6325v1 [math.DS], 2012
  3. AJPP1.
    Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)MathSciNetADSCrossRefGoogle Scholar
  4. AJPP2.
    Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Open Quantum System III. Recent Developments. S. Attal, A. Joye, C.-A. Pillet, editors. Lecture Notes in Mathematics 1882, New York: Springer, 2006, p. 1Google Scholar
  5. GP.
    Gilbert D.J., Pearson D.: On subordinacy and analysis of the spectrum of one dimensional Schrödinger operators. J. Math. Anal. 128, 30 (1987)MathSciNetMATHCrossRefGoogle Scholar
  6. GJW.
    Grech, P., Jakšić, V., Westrich M.: The spectral structure of the electronic black box hamiltonian. In preparation, available at http://arxiv.org/abs/1208.2420v1 [math-ph], 2012
  7. J.
    Jakšić, V.: Topics in spectral theory. In: Open Quantum Systems I. The Hamiltonian Approach. S. Attal, A. Joye, C.-A. Pillet, editors. Lecture Notes in Mathematics 1880, New York: Springer, 2006, p. 235Google Scholar
  8. JKP.
    Jakšić, V., Kritchevski, E., Pillet, C.-A.: Mathematical theory of the Wigner-Weisskopf atom. In: Large Coulomb systems. J. Dereziński, H. Siedentop, editors. Lecture Notes in Physics 695, New York: Springer, 2006, p. 145Google Scholar
  9. JP.
    Jakšić V., Pillet C.-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285 (2001)ADSMATHCrossRefGoogle Scholar
  10. KP.
    Kahn S., Pearson D.B.: Subordinacy and spectral theory for infinite matrices. Helv. Phys. Acta 65, 505 (1992)MathSciNetGoogle Scholar
  11. LS.
    Last Y., Simon B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  12. MMG.
    Maslov V.P., Molchanov S.A., Gordon A.Ya: Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture. Russ. J. Math. Phys. 1, 71 (1993)MathSciNetMATHGoogle Scholar
  13. N.
    Nenciu G.: Independent electrons model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)MathSciNetADSCrossRefGoogle Scholar
  14. Ru.
    Ruelle D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  15. S1.
    Simon B.: Schrödinger semigroups. Bulletin AMS 7, 447 (1982)ADSMATHCrossRefGoogle Scholar
  16. S2.
    Simon B.: Bounded eigenfunctions and absolutely continuous spectra for one dimensional Schrödinger operators. Proc. Amer. Math. Soc. 124, 3361 (1996)CrossRefGoogle Scholar
  17. Y.
    Yafaev, D.R.: Mathematical scattering theory. General theory. Translated from the Russian by J. R. Schulenberger. Translations of Mathematical Monographs 105. Providence, RI: Amer. Math. Soc., 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Département de Mathématiques and UMR 8088CNRS and Université de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  3. 3.Aix-Marseille Université, CNRS, CPT, UMR 7332, Case 907MarseilleFrance
  4. 4.Université de Toulon, CNRS, CPT, UMR 7332La GardeFrance
  5. 5.FRUMAM, Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations