Communications in Mathematical Physics

, Volume 319, Issue 1, pp 269–301 | Cite as

Instanton Moduli Spaces and Bases in Coset Conformal Field Theory

  • A. A. Belavin
  • M. A. Bershtein
  • B. L. Feigin
  • A. V. Litvinov
  • G. M. Tarnopolsky
Article

Abstract

The recently proposed relation between conformal field theories in two dimensions and supersymmetric gauge theories in four dimensions predicts the existence of the distinguished basis in the space of local fields in CFT. This basis has a number of remarkable properties: one of them is the complete factorization of the coefficients of the operator product expansion. We consider a particular case of the U(r) gauge theory on \({\mathbb{C}^{2}/\mathbb{Z}_{p}}\) which corresponds to a certain coset conformal field theory and describe the properties of this basis. We argue that in the case p =  2, r =  2 there exist different bases. We give an explicit construction of one of them. For another basis we propose the formula for matrix elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Nekrasov N.A.: Seiberg-Witten Prepotential From Instanton Counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)MathSciNetGoogle Scholar
  3. 3.
    Nakajima H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. of Math. 145, 379–388 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Nakajima H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91, 515–560 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Atiyah M., Bott R.: The moment map and equivariant cohomology. Topology. 23, 1–28 (1984)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Belavin V., Feigin B.: Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories. JHEP. 1107, 079 (2011)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Goddard P., Kent A., Olive D.I.: Unitary representations of the Virasoro and Supervirasoro algebras. Commun. Math. Phys. 103, 105–119 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Nakajima H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Amer. Math. Soc. 14, 145–238 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Miki K.: A(q,γ) analog of the W 1+∞ algebra. J. Math. Phys. 48, 123520 (2007)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S.: Kernel function and quantum algebras. RIMS Kokyuroku. 1689, 133–152 (2010)Google Scholar
  11. 11.
    Feigin B.: UnpublishedGoogle Scholar
  12. 12.
    Awata H., Feigin B., Hoshino A., Kanai M., Shiraishi J., Yanagida S.: Notes on Ding-Iohara algebra and AGT conjecture. http://arxiv.org/abs/1106.4088v3 [math-ph], 2011
  13. 13.
    Li W.-P., Qin Z., Wang W.: The cohomology rings of Hilbert schemes via Jack polynomials. CRM proc. Lect. Notes 38, 249–258 (2004)MathSciNetGoogle Scholar
  14. 14.
    Carlsson, E., Okounkov, A.: Exts and vertex operators. http://arxiv.org/abs/0801.2565v2 [math.AG], 2009
  15. 15.
    Alday L.F., Tachikawa Y.: Affine SL(2) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87–114 (2010)MathSciNetADSMATHGoogle Scholar
  16. 16.
    Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolsky G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. . Lett. Math. Phys. 98, 33–64 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Wyllard N.: A N-1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories. JHEP. 11, 002 (2009)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Mironov A., Morozov A.: On AGT relation in the case of U(3). Nucl. Phys. B825, 1–37 (2010)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Fateev V.A., Litvinov A. V.: Integrable structure, W-symmetry and AGT relation. JHEP. 01, 051 (2012)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Belavin A., Belavin V., Bershtein M.: Instantons and 2d Superconformal field theory. JHEP. 1109, 117 (2011)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Ito Y.: Ramond sector of super Liouville theory from instantons on an ALE space. Nucl. Phys. B861, 387–402 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Nishioka T., Tachikawa Y.: Para-Liouville/Toda central charges from M5-branes. Phys. Rev. D84, 046009 (2011)ADSGoogle Scholar
  23. 23.
    Wyllard N.: Coset conformal blocks and N = 2 gauge theories. http://arxiv.org/abs/1109.4264v1 [hep-th], 2011
  24. 24.
    Alfimov M., Tarnopolsky G.: Parafermionic Liouville field theory and instantons on ALE spaces. JHEP. 1202, 036 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Bonelli G., Maruyoshi K., Tanzini A.: Instantons on ALE spaces and super Liouville conformal field theories. JHEP. 1108, 056 (2011)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Bonelli G., Maruyoshi K., Tanzini A.: Gauge Theories on ALE Space and Super Liouville Correlation Functions. http://arxiv.org/abs/1107.4609.v2[hep-th], 2012
  27. 27.
    Argyres P.C., LeClair A., Tye S.H.H.: On the possibility of fractional superstrings. Phys. Lett. B253, 306–312 (1991)MathSciNetADSGoogle Scholar
  28. 28.
    Fateev V.A., Zamolodchikov A.B.: Representations of the algebra of parafermion currents of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical Potts Z(3) model. Theor. Math. Phys. 71, 451–462 (1987)MathSciNetGoogle Scholar
  29. 29.
    Pogosian R.G.: Operator algebra in two-dimensional conformal quantum field theory containing spin 4/3 parafermionic conserved currents. Int. J. Mod. Phys. A6, 2005–2023 (1991)ADSGoogle Scholar
  30. 30.
    Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. University Lecture Series. 18. Providence, RI: Amer. Math. Soc., 1999Google Scholar
  31. 31.
    Nakajima H., Yoshioka K.: it Lectures on Instanton Counting. http://arxiv.org/abs/math/0311058v1 [math. AG], 2003
  32. 32.
    Flume R., Poghossian R.: An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential. Int. J. Mod. Phys. A18, 2541 (2003)MathSciNetADSGoogle Scholar
  33. 33.
    Nakajima H., Yoshioka K.: Instanton counting on blowup. I. 4-dimensional pure gauge theory. Invent. Math. 162, 313–355 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Fucito F., Morales J.F., Poghossian R.: Instantons on quivers and orientifolds. JHEP. 10, 037 (2004)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Shadchin S.: Cubic curves from instanton counting. JHEP. 03, 046 (2006)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Oxford University Press, 1995Google Scholar
  37. 37.
    Belavin A., Belavin V.: AGT conjecture and Integrable structure of Conformal field theory for c = 1. Nucl. Phys. B850, 199–213 (2011)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Estienne B., Pasquier V., Santachiara R., Serban D.: Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model. Nucl. Phys. B860, 377–420 (2012)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Zamolodchikov A.B., Zamolodchikov Al.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B477, 577–605 (1996)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Nakajima H.: Sheaves on ALE spaces and quiver varieties. Mosc. Math. J. 7, 699–722 (2007)MathSciNetMATHGoogle Scholar
  41. 41.
    Bruzzo U., Poghossian R., Tanzini A.: Poincaré Polynomial of Moduli Spaces of Framed Sheaves on (Stacky) Hirzebruch Surfaces. Commun. Math. Phys. 304, 395–409 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Crnkovic C., Sotkov G., Stanishkov M.: Renormalization group flow for general SU(2) coset models. Phys. Lett. B226, 297 (1989)MathSciNetADSGoogle Scholar
  43. 43.
    Crnkovic C., Paunov R., Sotkov G., Stanishkov M.: Fusions of conformal models. Nucl. Phys. B336, 637 (1990)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Lashkevich M.: Superconformal 2-D minimal models and an unusual coset construction. Mod. Phys. Lett. A8, 851–860 (1993)MathSciNetADSGoogle Scholar
  45. 45.
    Fucito F., Morales J.F., Poghossian R.: Multi instanton calculus on ALE spaces. Nucl. Phys. B703, 518–536 (2004)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Fucito F., Morales J.F., Poghossian R.: Instanton on toric singularities and black hole countings. JHEP. 12, 073 (2006)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Nagao K.: Quiver varieties and Frenkel-Kac construction. J. Algebra. 321, 3764–3789 (2007)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Poghossian, R.: UnpublishedGoogle Scholar
  49. 49.
    Zamolodchikov Al.B.: Three-point function in the minimal Liouville gravity. Theor. Math. Phys. 142, 183–196 (2005)MathSciNetMATHGoogle Scholar
  50. 50.
    Rashkov R.C., Stanishkov M.: Three-point correlation functions in N = 1 Super Lioville Theory. Phys. Lett. B380, 49–58 (1996)MathSciNetADSGoogle Scholar
  51. 51.
    Poghosian R.H.: Structure constants in the N = 1 super-Liouville field theory. Nucl. Phys. B496, 451–464 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    Bershtein M.A., Fateev V.A., Litvinov A.V.: Parafermionic polynomials, Selberg integrals and three- point correlation function in parafermionic Liouville field theory. Nucl. Phys. B847, 413–459 (2011)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Fateev V.A.: The sigma model (dual) representation for a two-parameter family of integrable quantum field theories. Nucl. Phys. B473, 509–538 (1996)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. A. Belavin
    • 1
  • M. A. Bershtein
    • 1
    • 2
  • B. L. Feigin
    • 1
    • 2
    • 3
  • A. V. Litvinov
    • 1
    • 4
  • G. M. Tarnopolsky
    • 1
    • 4
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Higher School of EconomicsMoscowRussia
  4. 4.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations