Communications in Mathematical Physics

, Volume 316, Issue 1, pp 127–149 | Cite as

Representations of Nets of C*-Algebras over S 1

  • Giuseppe Ruzzi
  • Ezio Vasselli


In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S 1 admits faithful representations, and when the net is covariant under Diff(S 1), it admits representations covariant under any amenable subgroup of Diff(S 1).


Universal Property Inductive Limit Inductive System Faithful Representation Canonical Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki H.: Mathematical theory of quantum fields. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  2. 2.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Brunetti R., Franeceschini L., Moretti V.: Topological features of massive bosons on two dimensional Einstein space-time. Ann. Henri Poincaré 10(6), 1027–1073 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Blackadar B.E.: Weak expectations and nuclear C*-algebras. Indiana Univ. Math. J. 27(6), 1021–1026 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blackadar, B.: Operator algebras. Theory of C* -algebras and von Neumann algebras. Encyclopaedia Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry, III. Berlin: Springer-Verlag, 2006Google Scholar
  6. 6.
    Brunetti R., Ruzzi G.: Quantum charges and spacetime topology: The emergence of new superselection sectors. Commun. Math. Phys. 287(2), 523–563 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Carpi S., Kawahigashi Y., Longo R.: Structure and classification of superconformal nets. Ann. Henri Poincaré 9(6), 1069–1121 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Ciolli, F., Ruzzi, G., Vasselli, E.: Causal posets, loops and the construction of nets of local algebras for QFT. Adv. Theor. Math. Phys. Available as http://arxivorglabs/1109.4824v3 [math-ph], 2011. (to appear)
  9. 9.
    D’Antoni C., Morsella G.: Scaling algebras and superselection sectors: study of a class of models. Rev. Math. Phys. 18(5), 565–594 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics I. Commun. Math Phys. 23, 199–230 (1971)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics II. Commun. Math Phys. 35, 49–85 (1974)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: The Algebraic Theory of Superselection Sectors (Palermo, 1989), River Edge, NJ: World Sci. Publ., 1990, pp. 379–387Google Scholar
  13. 13.
    Haag, R.: Local Quantum Physics. Springer Texts and Monographs in Physics, 2nd edition, 1996Google Scholar
  14. 14.
    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 43, 848–861 (1964)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c¡1. Ann. of Math. 160(2), 493–522 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mac Lane, S.: Categories for the working mathematician. Second edition. Graduate Texts in Mathematics, 5. New York: Springer-Verlag, 1998Google Scholar
  17. 17.
    Ruzzi G.: Homotopy of posets, net-cohomology, and theory of superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17(9), 1021–1070 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ruzzi, G., Vasselli, E.: A new light on nets of C*-algebras and their representations. Commun. Math. Phys. 312(3), 655–694 (2012). Available as http://arxivorglabs/1005.3178v3 [math.OA], 2011

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations