Advertisement

Communications in Mathematical Physics

, Volume 317, Issue 1, pp 205–251 | Cite as

Stability of Schwarzschild-AdS for the Spherically Symmetric Einstein-Klein-Gordon System

  • Gustav Holzegel
  • Jacques SmuleviciEmail author
Article

Abstract

In this paper, we study the global behavior of solutions to the spherically symmetric coupled Einstein-Klein-Gordon (EKG) system in the presence of a negative cosmological constant. For the Klein-Gordon mass-squared satisfying a ≥ −1 (the Breitenlohner-Freedman bound being a > −9/8), we prove that the Schwarzschild-AdS spacetimes are asymptotically stable: Small perturbations of Schwarzschild-AdS initial data again lead to regular black holes, with the metric on the black hole exterior approaching, at an exponential rate, a Schwarzschild-AdS spacetime. The main difficulties in the proof arise from the lack of monotonicity for the Hawking mass and the asymptotically AdS boundary conditions, which render even (part of) the orbital stability intricate. These issues are resolved in a bootstrap argument on the black hole exterior, with the redshift effect and weighted Hardy inequalities playing the fundamental role in the analysis. Both integrated decay and pointwise decay estimates are obtained. As a corollary of our estimates on the Klein-Gordon field, one obtains in particular exponential decay in time of spherically-symmetric solutions to the linear Klein-Gordon equation on Schwarzschild-AdS.

Keywords

Black Hole Wave Equation Boundary Term Hardy Inequality Hairy Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. http://arXiv.org/abs/0908.2265vZ [math.AP], 2000
  2. 2.
    Blue P., Sterbenz J.: Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzschild Space. Commun. Math. Phys. 268(2), 481–504 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation in the De Sitter-Schwarzschild metric. Commun. Math. Phys. 282, 697–719 (2008)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Breitenlohner P., Freedman D. Z.: Stability in Gauged Extended Supergravity. Ann. Phys. 144, 249 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Christodoulou D.: The Problem of a Selfgravitating Scalar Field. Commun. Math. Phys. 105, 337–361 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Christodoulou D.: A mathematical theory of gravitational collapse. Commun. Math. Phys. 109, 613–647 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Christodoulou D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann Math. 140, 607–653 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Christodoulou D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Christodoulou, D., Klainerman, S.: The non-linear stability of the Minkowski space. Princeton Mathematical Series, Princeton NJ: Princeton Uniu Press, 1993Google Scholar
  10. 10.
    Dafermos M.: A note on naked singularities and the collapse of self- gravitating Higgs fields. Adv. Theor. Math. Phys. 9, 575–591 (2005)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dafermos M.: Spherically symmetric spacetimes with a trapped surface. Class. Quant. Grav. 22, 2221–2232 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVI International Congress on Mathematical Physics, P. Exner (ed.), London: World Scientific, 2009Google Scholar
  13. 13.
    Dafermos M., Holzegel G.: On the nonlinear stability of higher-dimensional triaxial Bianchi IX black holes. Adv. Theor. Math. Phys. 10, 503–523 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dafermos M., Rendall A.: An extension principle for the Einstein-Vlasov system in spherical symmetry. Ann. H. Poincare 6, 1137–1155 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self- gravitating scalar field. Invent. Math. 162, 381–457 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild-de Sitter spacetimes. http://arXiv.org/abs/0709.2766v1 [gr-qc], 2008
  17. 17.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Institut Mittag-Leffler Report no. 14, 2008/2009 (2008), http://arXiv.org/abs/0811.0354v1 [gr-qc], 2009
  18. 18.
    Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62, 859–919 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases \({|a| \ll M}\) or axisymmetry. http://arXiv.org/abs/1010.5132v1 [gr-qc], 2010
  20. 20.
    Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. to appear in Proceedings of the 12th Marcel Grossmann Meeting (2010), http://arXiv.org/abs/1010.5137v1 [gr-qc], 2010
  21. 21.
    Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Donninger R., Schlag W., Soffer A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309, 51–86 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Dyatlov S.: Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes. Ann. H. Poincare 13(5), 1101–1166 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. 306, 119–163 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Friedrich H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Gauntlett J.P., Sonner J., Wiseman T.: Holographic superconductivity in M-Theory. Phys. Rev. Lett. 103, 151601 (2009)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Hartnoll S.A., Herzog C.P., Horowitz G.T.: Building a Holographic Superconductor. Phys. Rev. Lett. 101, 031601 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Holzegel G.: On the massive wave equation on slowly rotating Kerr-AdS spacetimes. Commun. Math. Phys. 294, 169–197 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Holzegel, G.: Ultimately Schwarzschildean Spacetimes and the Black Hole Stability Problem. http://arXiv.org/abs/1010.3216v1 [gr-qc], 2010
  30. 30.
    Holzegel G.: Stability and decay-rates for the five-dimensional Schwarzschild metric under biaxial perturbations. Adv. Theor. Math. Phys. 14, 1245–1372 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de-Sitter spacetimes. J.Hyperbolic Differ. Equ. 9(2), 239–261 (2012)Google Scholar
  32. 32.
    Holzegel, G., Smulevici, J.: Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes, to appear in Communications on Pure and Applied Mathematics. http://arXiv.org/abs/1110.6794v1 [gr-qc], 2011
  33. 33.
    Holzegel, G., Smulevici, J.: Self-gravitating Klein-Gordon fields in asymptotically Anti-de Sitter spacetimes. Ann. Henri Poincaré 13(4), 991–1038 (2012)Google Scholar
  34. 34.
    Kodama H.: Conserved energy flux for the spherically symmetric system and the back reaction problem in black hole evaporation. Prog. Theor. Phys. 63, 1217 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    Kommemi, J.: The Global structure of spherically symmetric charged scalar field spacetimes. http://arXiv.org/abs/1107.0949v1 [gr-qc], 2011
  36. 36.
    Luk, J.: A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole. http://arXiv.org/abs/1009.0671v2 [gr-qc], 2011
  37. 37.
    Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Luk, J.: The Null Condition and Global Existence for Nonlinear Wave Equations on Slowly Rotating Kerr Spacetimes. http://arXiv.org/abs/1009.4109v1 [gr-qc], 2010
  39. 39.
    Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz Estimates on Schwarzschild Black Hole Backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Melrose, R., Sá Barreto, A., Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter-Schwarzschild space. http://arXiv.org/abs/0811.2229v1 [math.Ap], 2008
  41. 41.
    Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s Law on Nonstationary Spacetimes. Adv. Math.230(3), 995–1028 (2012)Google Scholar
  42. 42.
    Ringström H.: Future stability of the Einstein-non-linear scalar field system. Invent. math. 173, 123–208 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times, to appear in American Journal of Mathematics, 134(6). http://arXiv.org/abs/0910.5290v2 [math.Ap], 2012
  44. 44.
    Tataru D., Tohaneanu M.: Local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011, 248–292 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Tohaneanu M.: Strichartz estimates on Kerr black hole backgrounds. Trans AMS 364, 689–702 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Vasy, A.: The wave equation on asymptotically Anti-de Sitter spaces. Analysis & PDE 5(1), 81–143 (2012)Google Scholar
  47. 47.
    Vasy, A., Dyatlov, S.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces. http://arXiv.org/abs/1012.4391v2 [math.Ap], 2011
  48. 48.
    Winstanley E.: Dressing a black hole with non-minimally coupled scalar field hair. Class. Quant. Grav. 22, 2233–2248 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Laboratoire de MathématiquesUniversité Paris-Sud11OrsayFrance

Personalised recommendations