Advertisement

Communications in Mathematical Physics

, Volume 315, Issue 2, pp 489–530 | Cite as

Differential and Twistor Geometry of the Quantum Hopf Fibration

  • Simon BrainEmail author
  • Giovanni Landi
Article

Abstract

We study a quantum version of the SU(2) Hopf fibration \({S^7 \to S^4}\) and its associated twistor geometry. Our quantum sphere \({S^7_q}\) arises as the unit sphere inside a q-deformed quaternion space \({\mathbb{H}^2_q}\) . The resulting four-sphere \({S^4_q}\) is a quantum analogue of the quaternionic projective space \({\mathbb{HP}^1}\) . The quantum fibration is endowed with compatible non-universal differential calculi. By investigating the quantum symmetries of the fibration, we obtain the geometry of the corresponding twistor space \({\mathbb{CP}^3_q}\) and use it to study a system of anti-self-duality equations on \({S^4_q}\) , for which we find an ‘instanton’ solution coming from the natural projection defining the tautological bundle over \({S^4_q}\) .

Keywords

Hopf Algebra Quantum Group Twistor Space Differential Calculus Hodge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: Geometry of Yang-Mills Fields. Fermi Lectures, Scuola Normale Pisa, 1979Google Scholar
  2. 2.
    Belavin A., Polyakov A., Schwartz A., Tyupkin Y.: Pseudoparticle Solutions of the Yang-Mills Equations. Phys. Lett. 59(B), 85–87 (1975)MathSciNetGoogle Scholar
  3. 3.
    Bonechi F., Ciccoli N., Tarlini M.: Noncommutative Instantons on the Four-Sphere from Quantum Groups. Commun. Math. Phys. 226, 419–432 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Brain S., Majid S.: Quantisation of Twistor Theory by Cocycle Twist. Commun. Math. Phys. 284, 713–774 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Brain S., Landi G.: The 3D Spin Geometry of the Quantum Two-Sphere. Rev. Math. Phys. 22, 963–993 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brzeziński, T., Majid, S.: Quantum Group Gauge Theory on Quantum Spaces. Commun. Math. Phys. 157, 591–638 (1993); Erratum ibid. 167, 235 (1995)Google Scholar
  7. 7.
    Connes A., Landi G.: Noncommutative Manifolds, the Instanton Algebra and Isospectral Deformations. Commun. Math. Phys. 221, 141–159 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Da̧browski L., Landi G., Masuda T.: Instantons on the Quantum Four-Spheres \({S^4_q}\) . Commun. Math. Phys. 221, 161–168 (2001)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    D’Andrea F., Landi G.: Anti-Self-Dual Connections on the Quantum Projective Plane: Monopoles. Commun. Math. Phys. 297, 841–893 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Fiore G.: q-Quaternions and q-Deformed su(2) Instantons. J. Math. Phys. 48, 102301 (2007)Google Scholar
  11. 11.
    Fiore G.: q-Deformed su(2) Instantons by q-Quaternions. JHEP 0702, 010 (2007)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Klimyk, A., Schmüdgen, K.: Quantum Groups and their Representations. Berlin-Heidelberg: Springer Verlag, 1997Google Scholar
  13. 13.
    Landi G., Pagani C., Reina C.: A Hopf Bundle over a Quantum Four-Sphere from the Symplectic Group. Commun. Math. Phys. 263, 65–88 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Landi, G., Pagani, C., Reina, C., van Suijlekom, W.D.: Noncommutative Families of Instantons. IMRN 12, Art. ID rnn038 (2008)Google Scholar
  15. 15.
    Landi G., van Suijlekom W.D.: Principal Fibrations from Noncommutative Spheres. Commun. Math. Phys. 260, 203–225 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Majid S.: q-Euclidean Space and Quantum Group Wick Rotation by Twisting. J. Math. Phys. 35, 5025–5033 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge:University Press, 1995Google Scholar
  18. 18.
    Majid S.: Quantum and Braided Group Riemannian Geometry. J. Geom. Phys. 30, 113–146 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Majid S.: Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere. Commun. Math. Phys. 256, 255–285 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Reshetikin N.Yu., Takhtadzhyan L.A., Faddeev L.D.: Quantisation of Lie Groups and Lie Algebras. Leningrad Math. J. 1, 193–225 (1990)MathSciNetGoogle Scholar
  21. 21.
    Sołtan P.M.: Quantum SO(3) Groups and Quantum Group Actions on M 2. J. Noncommut. Geom. 4, 2–28 (2010)Google Scholar
  22. 22.
    Vaksman L.L., Soibelman Ya.S.: Algebra of Functions on the Quantum Group SU(n + 1) and Odd-Dimensional Quantum Spheres. Leningrad Math. J. 2, 1023–1042 (1991)MathSciNetGoogle Scholar
  23. 23.
    Wang S.: Quantum Symmetry Groups of Finite Spaces. Commun. Math. Phys. 195, 195–211 (1998)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Welk, M.: Differential Calculus on Quantum Projective Spaces. In: Quantum Groups and Integrable Systems (Prague, 1999). Czechoslovak J. Phys. 50, 219-224 (2000)Google Scholar
  25. 25.
    Woronowicz S.L.: Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups). Commun. Math. Phys. 122, 125–170 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Unité de Recherche en MathématiquesUniversité du Luxembourg (Campus Kirchberg)LuxembourgGrand Duchy of Luxembourg
  2. 2.Dipartimento di MatematicaUniversità di TriesteTriesteItaly
  3. 3.INFNTriesteItaly

Personalised recommendations