Communications in Mathematical Physics

, Volume 315, Issue 2, pp 465–488 | Cite as

Braid Group Statistics Implies Scattering in Three-Dimensional Local Quantum Physics

  • Jacques Bros
  • Jens MundEmail author


It is shown that quantum fields for massive particles with braid group statistics (Plektons) in three-dimensional space-time cannot be free, in a quite elementary sense: They must exhibit elastic two-particle scattering into every solid angle, and at every energy. This also implies that for such particles there cannot be any operators localized in wedge regions which create only single particle states from the vacuum and which are well-behaved under the space-time translations (so-called temperate polarization- free generators). These results considerably strengthen an earlier “NoGo-theorem for ’free’ relativistic Anyons”.

As a by-product we extend a fact which is well-known in quantum field theory to the case of topological charges (i.e., charges localized in space-like cones) in d ≥ 4, namely: If there is no elastic two-particle scattering into some arbitrarily small open solid angle element, then the 2-particle S-matrix is trivial.


Topological Charge Braid Group Mass Shell Single Particle State Monodromy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, H.: Mathematical theory of quantum fields. Int. Series of Monographs in Physics, no. 101, Oxford: Oxford University Press, 1999Google Scholar
  2. 2.
    Banerjee R., Chatterjee A., Sreedhar V.V.: Canonical quantization and gauge invariant anyon operators in Chern-Simons scalar electrodynamics. Ann. Phys. 222, 254–290 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Barata J., Nill F.: Electrically and magnetically charged states and particles in the 2+1-dimensional Z N-Higgs gauge model. Commun. Math. Phys. 171, 27–86 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Borchers H.J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219, 125–140 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Bros, J., Epstein, H.: Charged physical states and analyticity of scattering amplitutdes in the Buchholz Fredenhagen framework. In: 11th International Conference on Mathematical Physics, July 1994, Cambridge, MA: Intl. Press, 1995, pp. 330–341Google Scholar
  6. 6.
    Bros J., Epstein H., Glaser V.: Some rigorous analyticity properties of the four-point function in momentum space. Nuovo Cim. 31, 1265–1302 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bros J., Iagolnitzer D.: Causality and local analyticity: Mathematical study. Ann. H. Poic. A 18, 147–184 (1975)MathSciNetGoogle Scholar
  8. 8.
    Buchholz D., Epstein H.: Spin and statistics of quantum topological charges. Fysica 17, 329–343 (1985)Google Scholar
  9. 9.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Buchholz, D., Summers, S J.: Scattering in relativistic quantum field theory: Fundamental concepts and tools. In: Encyclopedia of Mathematical Physics J.-P. Françoise, G. Naber, T.S. Tsun, eds., Vol. 5, Elsevier, 2006Google Scholar
  11. 11.
    Buchholz, D., Summers, S. J.: Warped convolutions: A novel tool in the construction of quantum field theories. In: Quantum Field Theory and Beyond E. Seiler, K. Sibold, eds., Singapore: World Scientific, 2008, pp. 107–121Google Scholar
  12. 12.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23, 199 (1971)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35, 49–85 (1974)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Epstein H.: Generalization of the “edge-of-the-wedge” theorem. J. Math. Phys. 1, 524–531 (1960)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Forte S.: Quantum mechanics and field theory with fractional spin and statistics. Rev. Mod. Phys. 64, 193–236 (1992)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Fredenhagen K.: On the existence of antiparticles. Commun. Math. Phys. 79, 141–151 (1981)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Fredenhagen K., Gaberdiel M., Rüger S.M.: Scattering states of plektons (particles with braid group statistics) in 2+1 dimensional field theory. Commun. Math. Phys. 175, 319–355 (1996)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras II: Geometric aspects and conformal covariance. Rev. Math. Phys. SI1, 113–157 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fröhlich J., Marchetti P.A.: Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys. B 356, 533–573 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 0809, 131 (2008)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Haag, R.: Local quantum physics. Second ed., Texts and Monographs in Physics, Berlin-Heidelberg: Springer, 1996Google Scholar
  22. 22.
    Hepp K.: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1, 95–111 (1965)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Hörmander, L.: The analysis of linear partial differential operators I. Berlin: Springer, 1983Google Scholar
  24. 24.
    Jackiw R., Weinberg E.J.: Selfdual Chern-Simons vortices. Phys. Rev. Lett. 64, 2234 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Jost, R.: The general theory of quantized fields. Providence, RI: Amer. Math. Soc., 1965Google Scholar
  26. 26.
    Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Lüscher M.: Bosonization in 2+1 dimensions. Nucl. Phys. B 326, 557–582 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Mandelstam S.: Quantum electrodynamics without potentials. Ann. Phys. 19, 1–24 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Mintchev M., Rossi M.: Gauss law and charged fields in the presence of a Chern- Simons term. Phys. Lett. B 271, 187–195 (1991)MathSciNetADSGoogle Scholar
  30. 30.
    Müller V.F.: Intermediate statistics in two space dimensions in a lattice-regularized Hamiltonian quantum field theory. Z. Phys. C 47, 301–310 (1990)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mund J.: No-go theorem for ‘free’ relativistic anyons in d = 2 + 1. Lett. Math. Phys. 43, 319–328 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Mund J.: The spin statistics theorem for anyons and plektons in d = 2 + 1. Commun. Math. Phys. 286, 1159–1180 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Mund J.: The CPT and Bisognano-Wichmann theorems for anyons and plektons in d=2+1. Commun. Math. Phys. 294, 505–538 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Mund, J. An algebraic Jost-Schroer theorem. Commun. Math. Phys. (to appear)Google Scholar
  35. 35.
    Mund J., Schroer B., Yngvason J.: String–localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of modern mathematical physics I, II. New York: Academic Press, 1975/1980Google Scholar
  37. 37.
    Roberts J.E.: Local cohomology and superselection structure. Commun. Math. Phys. 51, 107–119 (1976)ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Roberts, J.E.: Net cohomology and its applications to field theory. In: Quantum Fields – Algebras, Processes, L. Streit, ed., Wien-New York: Springer, 1980, pp. 239–268Google Scholar
  39. 39.
    Roberts, J.E.: Lectures on algebraic quantum field theory. In: The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, D. Kastler, ed., Singapore-New Jersey-London-Hong Kong: World Scientific, 1990, pp. 1–112Google Scholar
  40. 40.
    Semenoff G.W.: Canonical quantum field theory with exotic statistics. Phys. Rev. Lett. 61(5), 517 (1988)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Swanson M.S.: Fock-Space representations of coupled Abelian Chern-Simons theory. Phys. Rev. 42(2), 552 (1990)MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueCEASaclayFrance
  2. 2.Departamento de FísicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations