Advertisement

Communications in Mathematical Physics

, Volume 318, Issue 1, pp 69–109 | Cite as

A Renormalizable 4-Dimensional Tensor Field Theory

Article

Abstract

We prove that an integrated version of the Gurau colored tensor model supplemented with the usual Bosonic propagator on U(1)4 is renormalizable to all orders in perturbation theory. The model is of the type expected for quantization of space-time in 4D Euclidean gravity and is the first example of a renormalizable model of this kind. Its vertex and propagator are four-stranded like in 4D group field theories, but without gauge averaging on the strands. Surprisingly perhaps, the model is of the \({\phi^6}\) rather than of the \({\phi^4}\) type, since two different \({\phi^6}\)-type interactions are log-divergent, i.e. marginal in the renormalization group sense. The renormalization proof relies on a multiscale analysis. It identifies all divergent graphs through a power counting theorem. These divergent graphs have internal and external structure of a particular kind called melonic. Melonic graphs dominate the 1/N expansion of colored tensor models and generalize the planar ribbon graphs of matrix models. A new locality principle is established for this category of graphs which allows to renormalize their divergences through counterterms of the form of the bare Lagrangian interactions. The model also has an unexpected anomalous log-divergent \({(\int \phi^2)^2}\) term, which can be interpreted as the generation of a scalar matter field out of pure gravity.

Keywords

Power Counting Tensor Model Ribbon Graph Outer Pair Boundary Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivasseau V.: Towards Renormalizing Group Field Theory. PoS C NCFG2010, 004 (2010)Google Scholar
  2. 2.
    Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2-D Gravity and random matrices. Phys. Rept. 254, 1 (1995)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    David F.: A Model Of Random Surfaces With Nontrivial Critical Behavior. Nucl. Phys. B 257, 543 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Kazakov V.A.: Bilocal regularization of models of random surfaces. Phys. Lett. B 150, 282 (1985)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Brézin E., Kazakov V.A.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144 (1990)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Douglas M.R., Shenker S.H.: Strings in less than one dimension. Nucl. Phys. B 335, 635 (1990)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gross D.J., Migdal A.A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2d quantum gravity. Mod. Phys. Lett. A 3, 819 (1988)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    David F.: Conformal field theories coupled to 2d gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    Distler J., Kawai H.: Conformal field theory and 2d quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B 321, 509 (1989)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Duplantier, B.: Conformal random geometry. In: Les Houches, Session LXXXIII: Mathematical Statistical Physics, (July, 2005), Editors A. Bovier, F. Dunlop, F. den Hollander, A. van Enter, J. Dalibard, Amsterdam: Elsevier, 2006, pp. 101–217Google Scholar
  12. 12.
    ’t Hooft G.: A Planar Diagram theory for Strong Interactions. Nucl. Phys. B 72, 461 (1974)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Ambjorn J., Durhuus B., Jonsson T.: Three-Dimensional Simplicial Quantum Gravity And Generalized Matrix Models. Mod. Phys. Lett. A 6, 1133 (1991)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Gross M.: Tensor models and simplicial quantum gravity in >  2-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Ambjorn J., Varsted S.: Three-dimensional simplicial quantum gravity. Nucl. Phys. B 373, 557 (1992)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Sasakura N.: Canonical tensor models with local time. Int. J. Mod. Phys. A 27, 1250020 (2012)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Sasakura N.: Tensor models and hierarchy of n-ary algebras. Int. J. Mod. Phys. A 26, 3249–3258 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Rey, S.-J., Sugino, F.: A Nonperturbative Proposal for Nonabelian Tensor Gauge Theory and Dynamical Quantum Yang-Baxter Maps. http://arxiv.org/abs/1002.4636v1 [hep-th], 2010
  20. 20.
    Boulatov D.V.: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Ooguri H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Freidel L.: Group field theory: An overview. Int. J. Theor. Phys. 44, 1769 (2005)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Oriti, D.: The group field theory approach to quantum gravity: some recent results. In: The Planck Scale: Proc. of the XXV Max Born Symp., J. Kowalski-Gilkman, R. Durka, M. Szczachor (eds.), Melville, NJ: AIP, 2009Google Scholar
  24. 24.
    Oriti, D.: The microscopic dynamics of quantum space as a group field theory, http://arxiv.org/abs/1110.5606v1 [hep-th] 2011, to appear in Foundations of Space and Time: Reflections on Quntum Gravity, C. Ellis, J. Murgan, A. Weltman (eds.), Cambridge Univ. Press
  25. 25.
    Barrett J.W., Crane L.: An Algebraic interpretation of the Wheeler-DeWitt equation. Class. Quant. Grav. 14, 2113 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Engle J., Livine E., Pereira R., Rovelli C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B799, 136 (2008)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Freidel L., Krasnov K.: A New Spin Foam Model for 4d Gravity. Class. Quant. Grav. 25, 125018 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Ben Geloun J., Gurau R., Rivasseau V.: EPRL/FK Group Field Theory. Europhys. Lett. 92, 60008 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Krajewski T., Magnen J., Rivasseau V., Tanasa A., Vitale P.: Quantum Corrections in the Group Field Theory Formulation of the EPRL/FK Models. Phys. Rev. D 82, 124069 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Freidel L., Gurau R., Oriti D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Magnen J., Noui K., Rivasseau V., Smerlak M.: Scaling behavior of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Ben Geloun J., Magnen J., Rivasseau V.: Bosonic Colored Group Field Theory. Eur. Phys. J. C 70, 1119 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Ben Geloun J., Krajewski T., Magnen J., Rivasseau V.: Linearized Group Field Theory and Power Counting Theorems. Class. Quant. Grav. 27, 155012 (2010)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Bonzom V., Smerlak M.: Bubble divergences from cellular cohomology. Lett. Math. Phys. 93, 295 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Bonzom V., Smerlak M.: Bubble divergences from twisted cohomology. Commun Math. Phys. 312(2), 399–426 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Bonzom V., Smerlak M.: Bubble divergences: sorting out topology from cell structure. Ann. H. Poincare 13, 185–208 (2012)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Gurau R.: Colored Group Field Theory. Commun. Math. Phys. 304, 69 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Gurau R.: The 1/N expansion of colored tensor models. Ann. H. Poincare 12, 829–847 (2011)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Gurau R., Rivasseau V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Bonzom V., Gurau R., Riello A., Rivasseau V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Bonzom V., Gurau R., Rivasseau V.: The Ising Model on Random Lattices in arbitrary dimensions. Phys. Lett. B 711, 88 (2012)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Benedetti D., Gurau R.: Phase Transition in Dually Weighted Colored Tensor Models. Nucl. Phys. B 855, 420 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Gurau R., Ryan J.P.: Colored Tensor Models - a review. SIGMA 8, 020 (2012)MathSciNetGoogle Scholar
  45. 45.
    Gurau R.: Topological Graph Polynomials in Colored Group Field Theory. Ann. H. Poincare 11, 565 (2010)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Gurau R.: Lost in Translation: Topological Singularities in Group Field Theory. Class. Quant. Grav. 27, 235023 (2010)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Baratin A., Girelli F., Oriti D.: Diffeomorphisms in group field theories. Phys. Rev. D 83, 104051 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Gurau R.: The double scaling limit in arbitrary dimensions: A Toy Model. Phys. Rev. D 84, 124051 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Gurau R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852, 592 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    Gurau, R.: Universality for Random Tensors. http://arxiv.org/abs/1111.0519v2 [math.PR], 2011
  51. 51.
    Grosse H., Wulkenhaar R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  52. 52.
    Rivasseau V., Vignes-Tourneret F., Wulkenhaar R.: Renormalization of noncommutative φ4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    Oriti D., Sindoni L.: Towards classical geometrodynamics from Group Field Theory hydrodynamics. New J. Phys. 13, 025006 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Ben Geloun J., Bonzom V.: Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function. Int. J. Theor. Phys. 50, 2819 (2011)MATHCrossRefGoogle Scholar
  55. 55.
    Rivasseau, V.: From perturbative to constructive renormalization. Princeton series in physics, Princeton, NJ: Princeton Univ. Pr., 1991Google Scholar
  56. 56.
    “it Handbook of Mathematical Functions,” 10th edition Appl. Math. Ser. 55, Section 19, A. Abramowitz and I. A. Stegun editors, NY: Dover, 1972Google Scholar
  57. 57.
    Gallavotti G., Nicolo F.: Renormalization theory in four-dimensional scalar fields. I. Commun. Math. Phys. 100, 545 (1985)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Rivasseau, V.: Non-commutative renormalization. http://arxiv.org/abs/0705.0705v1 [hep-th], 2007
  59. 59.
    Lins, S.: Gems, Computers and Attractors for 3-Manifolds. Series on Knots and Everything, Vol. 5, Singapore: World Scientific, 1995Google Scholar
  60. 60.
    Ferri M., Gagliardi C.: Cristallisation moves. Pacific J. Math. 100, 85–103 (1982)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Filk T.: Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53–58 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  62. 62.
    Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative \({\varphi_{4}^{4} }\) field theory in x space. Commun. Math. Phys. 267, 515 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    Feldman J., Magnen J., Rivasseau V., Trubowitz E.: An Intrinsic 1/N expansion for many fermion systems. Europhys. Lett. 24, 437 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    Wang Z., Wan S.: Renormalization of Orientable Non-Commutative Complex \({\varphi_{(3)}^{6} }\) Model. Ann. H. Poincare 9, 65 (2008)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Ben Geloun J.: Classical group field theory. J. Math. Phys. 53, 022901 (2012)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Ben Geloun J.: Ward-Takahashi identities for the colored Boulatov model. J. Phys. A 44, 415402 (2011)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Rivasseau V.: Quantum gravity and renormalization: The tensor track. AIP Conf. Proc. 1444, 18 (2011)ADSGoogle Scholar
  68. 68.
    Ben Geloun, J., Samary, D.O.: 3D Tensor Field Theory: Renormalization and One-loop β-functions. http://arxiv.org/abs/1201.0176v1 [hep-th], 2012

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Laboratoire de Physique Théorique, CNRS UMR 8627Université Paris-Sud XIOrsayFrance
  3. 3.International Chair in Mathematical Physics and Applications, (ICMPA-UNESCO Chair)University of Abomey-CalaviCotonouRep. of Benin

Personalised recommendations