Advertisement

Communications in Mathematical Physics

, Volume 315, Issue 1, pp 169–213 | Cite as

Twisted Differential String and Fivebrane Structures

  • Hisham Sati
  • Urs Schreiber
  • Jim Stasheff
Article

Abstract

In the background effective field theory of heterotic string theory, the Green-Schwarz anomaly cancellation mechanism plays a key role. Here we reinterpret it and its magnetic dual version in terms of, differential twisted String- and differential twisted Fivebrane-structures that generalize the notion of Spin-structures and Spin-lifting gerbes and their differential refinement to smooth Spin-connections. We show that all these structures can be encoded in terms of nonabelian cohomology, twisted nonabelian cohomology, and differential twisted nonabelian cohomology, extending the differential generalized abelian cohomology as developed by Hopkins and Singer and shown by Freed to formalize the global description of anomaly cancellation problems in higher gauge theories arising in string theory. We demonstrate that the Green-Schwarz mechanism for the H 3-field, as well as its magnetic dual version for the H 7-field define cocycles in differential twisted nonabelian cohomology that may be called, respectively, differential twisted Spin(n)-, String(n)- and Fivebrane(n)- structures on target space, where the twist in each case is provided by the obstruction to lifting the classifying map of the gauge bundle through a higher connected cover of U(n) or O(n). We show that the twisted Bianchi identities in string theory can be captured by the (nonabelian) L -algebra valued differential form data provided by the differential refinements of these twisted cocycles.

Keywords

Heterotic String Anomaly Cancellation Chern Character Gauge Bundle String Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abad, C., Crainic, M.: Representations up to homotopy of Lie algebroids. http://arxiv.org/abs/0901.0319v2 [math.DG], 2011
  2. 2.
    Aschieri P., Jurčo B.: Gerbes, M5-brane anomalies and E 8 gauge theory. J. High Energy Phys. 0410, 068 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Baas, N. A., Bökstedt, M., Kro, T. A.: Two-categorical bundles and their classifying spaces. http://arxiv.org/abs/math/0612549v2 [math.AT], 2008
  4. 4.
    Baez J., Crans A., Schreiber U., Stevenson D.: From loop groups to 2-groups. Homology, Homotopy Appl. 9(2), 101–135 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baez, J., Schreiber, U.: Higher gauge theory. In: Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., 431, Providence, RI: Amer. Math. Soc., pp. 7–30Google Scholar
  6. 6.
    Baez, J., Stevenson, D.: The classifying space of a topological 2-group. http://arxiv.org/abs/0801.3843v2 [math.AT], 2009
  7. 7.
    Behrend K., Xu P.: Differentiable Stacks and Gerbes. J. Symplectic Geom. 9, 285–341 (2001)MathSciNetGoogle Scholar
  8. 8.
    Block, J.: Duality and equivalence of module categories in noncommutative geometry I. http://arxiv.org/abs/math/0509284v2 [math.QA], 2009
  9. 9.
    Bott R.: The space of loops on a Lie group. Michigan Math. J. 5, 35–61 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bouwknegt P., Carey A.L., Mathai V., Murray M.K., Stevenson D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Bouwknegt P., Mathai V.: D-branes, B-fields and twisted K-theory. J. High Energy Phys. 03, 007 (2000)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Brodzki J., Mathai V., Rosenberg J., Szabo R.J.: D-branes, RR-fields and duality on noncommutative manifolds. Commun. Math. Phys. 277(3), 643–706 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Bunke, U.: String structures and trivialisations of a Pfaffian line bundle. http://arxiv.org/abs/0909.0846v3 [math.KT], 2011
  14. 14.
    Chamseddine A.H.: Interacting supergravity in ten-dimensions: the role of the six-index gauge field. Phys. Rev. D 24, 3065 (1981)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Chamseddine A.H.: A family of dual N = 2 supergravity actions in ten-dimensions. Phys. Lett. B 367, 134–139 (1996)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Diaconescu, E., Freed, D.S., Moore, G.: The M-theory 3-form and E 8 gauge theory. In: Elliptic cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge: Cambridge Univ. Press 2007, pp. 44–88Google Scholar
  17. 17.
    Diaconescu E., Moore G., Witten E.: E 8 gauge theory, and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)MathSciNetGoogle Scholar
  18. 18.
    Dixon J.A., Duff M.J., Plefka J.C.: Putting string/fivebrane duality to the test. Phys. Rev. Lett. 69, 3009–3012 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Duff M.J., Liu J.T., Minasian R.: Eleven-dimensional origin of string-string duality: A one loop test. Nucl. Phys. B 452, 261–282 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Evslin J., Sati H.: Can D-branes wrap nonrepresentable cycles?. J. High Energy Phys. 0610, 050 (2006)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Fiorenza, D., Schreiber, U., Stasheff, J.: Čech cocycles for differential characteristic classes – an ∞-Lie theoretic construction, http://arxiv.org/abs/1011.4735v2 [math.AT], 2011
  22. 22.
    Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom., VII, Somerville, MA: Int. Press 2000, http://arxiv.org/abs/hep-th/0011220v2, 2001, pp. 129–194
  23. 23.
    Freed D., Harvey J.A., Minasian R., Moore G.: Gravitational anomaly cancellation for M-theory fivebranes. Adv. Theor. Math. Phys. 2, 601–618 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Freed D.S., Witten E.: Anomalies in string theory with D-Branes. Asian J. Math. 3, 819 (1999)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gates S.J. Jr, Nishino H.: New D = 10, N = 1 supergravity coupled to Yang-Mills supermultiplet and anomaly cancellations. Phys. Lett. B 157, 157 (1985)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Green M.B., Schwarz J. H.: Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B 149, 117 (1984)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Henriques A.: Integrating L -algebras. Compos. Math. 144(4), 1017–1045 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Hopkins M.J., Singer I. M.: Quadratic functions in geometry, topology, and M-theory. J. Diff. Geom. 70, 329–452 (2005)zbMATHGoogle Scholar
  29. 29.
    Horava P., Witten E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Isham C.J., Pope C.N.: Nowhere vanishing spinors and topological obstructions to the equivalence of the NSR and GS superstrings. Class. Quant. Grav. 5, 257 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Isham C.J., Pope C.N., Warner N.P.: Nowhere vanishing spinors and triality rotations in eight manifolds. Class. Quant. Grav. 5, 1297 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Kapustin A.: D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Killingback T.P.: World-sheet anomalies and loop geometry. Nucl. Phys. B 288, 578 (1987)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Kramer L., Stolz S.: A diffeomorphism classification of manifolds which are like projective planes. J. Differential Geom. 77(2), 177–188 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Lechner K., Tonin M.: World volume and target space anomalies in the D = 10 superfivebrane sigma model. Nucl. Phys. B 475, 545–561 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Lurie, J.: Higher topos theory. Annals of Mathematics Studies, No. 170, Princeton, NJ: Princeton University Press, 2009Google Scholar
  38. 38.
    Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. Cambridge: Cambridge University Press, 2005Google Scholar
  39. 39.
    Nikolaus, T., Sachse, C., Wockel, C.: A smooth model for the string 2-group. http://arxiv.org/abs/1104.4288v3 [math.AT], 2011
  40. 40.
    Nishino H., Gates S. J. Jr: Dual versions of higher dimensional supergravities and anomaly cancellations in lower dimensions. Nucl. Phys. B 268, 532–542 (1986)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Redden C.: String structures and canonical 3-forms. Pacif. J Math. 249(2), 447–484 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Salam A., Sezgin E.: Anomaly freedom in chiral supergravities. Phys. Scripta 32, 283 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    Sati H.: Geometric and topological structures related to M-branes. Proc. Symp. Pure Math. 81, 181–236 (2010)MathSciNetGoogle Scholar
  44. 44.
    Sati H.: Geometric and topological structures related to M-branes II: Twisted String and Stringc structures. J. Australian Math. Soc. 90, 93–108 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sati H.: Twisted topological structures related to M-branes. Int. J. Geom. Meth. Mod. Phys. 8, 1097–1116 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Sati, H., Schreiber, U., Stasheff, J.: L -connections and applications to String- and Chern-Simons n-transport. In: Recent Developments in QFT, eds. B. Fauser et al., Basel: Birkhäuser, 2008Google Scholar
  47. 47.
    Sati H., Schreiber U., Stasheff J.: Fivebrane structures. Rev. Math. Phys. 21, 1–44 (2009)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Schommer-Pries C.: A finite-dimensional model for the String 2-group. Geom. Top. 15, 609–676 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Schreiber, U.: Differential cohomology in a cohesive topos. Habilitation, Hamburg 2011 http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
  50. 50.
  51. 51.
    Schreiber, Schreiber, Schreiber, Schreiber : Parallel transport and functors. J.Homotophy Rel. Struct. 4, 187–244 (2009)zbMATHGoogle Scholar
  52. 52.
    Schreiber U., Waldorf K.: Smooth functors vs. differential forms. Homol.Homot. Appl. 13(1), 143–203 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schreiber, U., Waldorf, K.: Connections on nonabelian gerbes and their holonomy. http://arxiv.org/abs/0808.1923 [math.DG]
  54. 54.
    Singer W. M.: Connective fiberings over BU and U. Topology 7, 271–303 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Stasheff J.: Constrained Poisson algebras and strong homotopy representations. Bull. Amer. Math. Soc. (N.S.) 19(1), 287–290 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Stolz, S., Teichner, P.: What is an elliptic object? In: Topology, geometry and quantum field theory, Cambridge: Cambridge Univ. Press, 2004, pp. 247–343Google Scholar
  57. 57.
    Stong R.: Determination of H* (BO(k, . . . ,∞), Z 2) and H * (BU(k, . . . ,∞), Z 2). Trans. Amer. Math. Soc. 107, 526–544 (1963)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Toën, B.: Notes on non-abelian cohomology. Lecture in MSRI, January 2002, [http://www.math.univ-toulouse.fr/~toen/msri2002.pdf]
  59. 59.
    Vafa C., Witten E.: A one-loop test of string duality. Nucl. Phys. B 447, 261–270 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  60. 60.
    Waldorf, K.: String connections and Chern-Simons theory. http://arxiv.org/abs/0906.0117v2 [math.DG], 2012
  61. 61.
    Wang B.-L.: Geometric cycles, index theory and twisted K-homology. J. Noncommut. Geom. 2(4), 497–552 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Witt, F.: Special metric structures and closed forms. DPhil Thesis University of Oxford, 2004Google Scholar
  63. 63.
    Witten E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. 64.
    Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Witten E.: D-Branes and K-Theory. J. High Energy Phys. 12, 019 (1998)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Witten E.: Duality relations among topological effects in string theory. J. High Energy Phys. 0005, 031 (2000)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA
  2. 2.Fachbereich MathematikUniversität HamburgHamburgGermany
  3. 3.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of MathematicsUniversity of MarylandCollege ParkUSA
  5. 5.Department of MathematicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations