Advertisement

Communications in Mathematical Physics

, Volume 313, Issue 2, pp 351–373 | Cite as

Models for Gapped Boundaries and Domain Walls

  • Alexei Kitaev
  • Liang Kong
Article

Abstract

We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category \({\mathcal C}\) as in the Levin-Wen model, whereas the boundary is associated with a module category over \({\mathcal C}\) . We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.

Keywords

Domain Wall Defect Line Simple Object Tensor Category Fusion Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B10.
    Bombin H.: Topological Order with a Twist: Ising Anyons from an Abelian Model. Phys. Rev. Lett. 105, 030403 (2010)ADSCrossRefGoogle Scholar
  2. BK98.
    Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary. http://arxiv.org/abs/quant-ph/9811052v1, 1998
  3. BMCA10.
    Buerschaper, O., Mombelli, J.M., Christandl, M., Aguado, M.: A hierarchy of topological tensor network states. http://arxiv.org/abs/1007.5283v1 [cond-mat-str-el], 2010
  4. BSW10.
    Beigi S., Shor P., Whalen D.: The Quantum Double Model with Boundary: Condensations and Symmetries. Commun. Math. Phys. 306(3), 663–694 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. BSz95.
    Böhm G., Szlachányi K.: A coassociative C*-quantum group with nonintegral dimensions. Lett. Math. Phys. 35, 437–456 (1996)CrossRefGoogle Scholar
  6. BW93.
    Barrett J., Westbury B.: Invariants of piecewise-linear 3-manifolds. Trans. Amer. Math. Soc. 348(10), 3997–4022 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. D90.
    Deligne, P.: Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Boston, MA: Birkhäuser Boston, 1990, pp. 111–195Google Scholar
  8. DKR10.
    Davydov A., Kong L., Runkel I.: Invertible defects and isomorphisms of rational CFTs. Adv. Theor. Math. Phys. 15, 43–69 (2011)Google Scholar
  9. ENO02.
    Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. of Math. 162, 581–642 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. ENO08.
    Etingof P., Nikshych D., Ostrik V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2010)MathSciNetCrossRefGoogle Scholar
  11. ENOM09.
    Etingof P., Nikshych D., Ostrik V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. EO03.
    Etingof, P., Ostrik, V.: Finite tensor categories, Mosc. Math. J. 4(3), 627–654, 782–783 (2004)Google Scholar
  13. FFRS06.
    Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007)ADSzbMATHCrossRefGoogle Scholar
  14. FG90.
    Fröhlich J., Gabbiani F.: Braid statistics in local quantum field theory. Rev. Math. Phys. 2(3), 251–353 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  15. FRS89.
    Fredenhagen K., Rehren K.H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras, I: General theory. Commun. Math. Phys. 125(2), 201–226 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Ka10.
    Kapustin, A.: Topological Field Theory, Higher Categories, and Their Applications. In: Proceedings of the International Congress of Mathematicians, Vol. III. New Delhi: Hindustan Book Agency, 2010, pp. 2021–2043Google Scholar
  17. K97.
    Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. K05.
    Kitaev A.Y.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. KB10.
    Kirillov, A. Jr., Balsam, B.: Turaev-Viro invariants as an extended TQFT. http://arxiv.org./abs/1004.1533v3 [math.GT], 2010
  20. Ko.
    Kong, L.: In preparationGoogle Scholar
  21. KS10a.
    Kapustin A., Saulina N.: Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B 845(3), 393–435 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. KS10b.
    Kapustin, A., Saulina, N.: Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory. In: Mathematical foundations of quantum field theory and perturbative string theory. Proc. Sympos. Pure Math., Vol. 83. Providence, RI: Amer. Math. Soc., 2011, pp. 175–198Google Scholar
  23. Ku91.
    Kuperberg G.: Involutory Hopf algebras and 3-manifold invariants. Internat. J. Math. 2(1), 41–66 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. LW04.
    Levin M.A., Wen X.-G.: String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)ADSCrossRefGoogle Scholar
  25. L08.
    Lurie, J.: On the Classification of Topological Field Theories. In: Current developments in mathematics. Somerville, MA: Int. Press, 2009, pp. 129–280Google Scholar
  26. Ma98.
    Mackaay M.: Spherical 2-categories and 4-manifold invariants. Adv. Math. 143, 288–348 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  27. MSP02.
    Misguich G., Serban D., Pasquier V.: Quantum Dimer Model on the Kagome Lattice: Solvable Dimer Liquid and Ising Gauge Theory. Phys. Rev. Lett. 89, 137202 (2002)ADSCrossRefGoogle Scholar
  28. MS00.
    Moessner R., Sondhi S.L.: Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001)ADSCrossRefGoogle Scholar
  29. MR91.
    Moore G., Read N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)MathSciNetADSCrossRefGoogle Scholar
  30. M01.
    Müger M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1-2), 81–157 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. N03.
    Nikshych D.: Semisimple weak Hopf algebras. J. Algebra 275, 639–667 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  32. O01.
    Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  33. RC89.
    Read N., Chakraborty B.: Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989)ADSCrossRefGoogle Scholar
  34. T01.
    Tambara D.: A duality for modules over monoidal categories of representations of semisimple Hopf algebras. J. Algebra 241, 515–547 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  35. TV92.
    Turaev V.G., Viro O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbol. Topology 31(4), 865–902 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Institute for Advanced StudyTsinghua UniversityBeijingChina

Personalised recommendations