Communications in Mathematical Physics

, Volume 312, Issue 2, pp 427–445 | Cite as

New Bounds on the Maximum Ionization of Atoms



We prove that the maximum number N c of non-relativistic electrons that a nucleus of charge Z can bind is less than 1.22Z + 3Z 1/3. This improves Lieb’s upper bound N c  < 2Z + 1 Lieb (Phys Rev A 29:3018–3028, 1984) when Z ≥ 6. Our method also applies to non-relativistic atoms in magnetic field and to pseudo-relativistic atoms. We show that in these cases, under appropriate conditions, \({\limsup_{Z \to \infty}N_c/Z \le 1.22}\).


Bosonic Atom Landau Band Standing Open Problem Binding Inequality Arbitrary Distinct Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner B.: On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionization. J. Phys. A: Math. Gen. 17, 1593–1602 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Benguria R., Lieb E.H.: Proof of stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    Benguria R., Lieb E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys B 18, 1045–1059 (1985)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Dall’Acqua A., Solovej J.P.: Excess charge for pseudo-relativistic atoms in Hartree-Fock theory. Documenta Mathematica 115, 285–345 (2010)MathSciNetGoogle Scholar
  5. 5.
    Dall’Acqua, A., Østergaard Sørensen, T., Stockmeyer, E.: Private communicationGoogle Scholar
  6. 6.
    Dolbeault J., Laptev A., Loss M.: Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121–1126 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fefferman C., Seco L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Lieb E.H.: The stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    Lieb E.H., Sigal I.M., Simon B., Thirring W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Lieb, E.H., Seiringer, R.: The stability of matter in quantum mechanics. Cambridge: Cambridge University Press, 2009Google Scholar
  13. 13.
    Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. Commun. Pure Appl. Math. 47, 513–591 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161, 77–124 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Lieb E.H., Thirring W.: Bound for the Kinetic Energy of Fermions which Proves the Stability of Matter. Phys. Rev. Lett. 35, 687–689 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    Leinfelder H., Simader C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Messer J., Spohn H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29(3), 561–578 (1982)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Ruskai M.B.: Absence of discrete spectrum in highly negative ions, II. Extension to Fermions. Commun. Math. Phys. 82, 325–327 (1982)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Seco L.A., Sigal I.M., Solovej J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Seiringer R.: On the maximal ionization of atoms in strong magnetic fields. J. Phys. A: Math. Gen. 34, 1943–1948 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Sigal I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Sigal I.M.: How many electrons can a nucleus bind?. Ann. Phys. 157, 307–320 (1984)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Solovej J.P.: Asymptotics for bosonic atoms. Lett. Math. Phys. 20, 165–172 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Solovej J.P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158, 509–576 (2003)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Østergaard Sørensen T.: The large-Z behavior of pseudo-relativistic atoms. J. Math. Phys. 46(5), 052307 (2005)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Teschl, G.: Mathematical methods in quantum mechanics, with applications to Schrödinger operators. Graduate Studies in Mathematics, Vol. 99. Providence, RI: Amer. Math. Soc., 2009Google Scholar
  28. 28.
    Zhislin G.: Discussion of the spectrum of Schrödinger operator for system of many particles. Trudy. Mosk. Mat. Obšč. 9, 81 (1960)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations