Advertisement

Communications in Mathematical Physics

, Volume 312, Issue 2, pp 399–426 | Cite as

Bubble Divergences from Twisted Cohomology

  • Valentin Bonzom
  • Matteo Smerlak
Article

Abstract

We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory and 3d Riemannian quantum gravity, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined because of a phenomenon known as ‘bubble divergences’. In this paper, we extend recent results of the authors to the cases where these divergences cannot be understood in terms of cellular cohomology. We introduce in its place the relevant twisted cohomology, and use it to compute the divergence degree of the partition function. We also relate its dominant part to the Reidemeister torsion of the complex, thereby generalizing previous results of Barrett and Naish-Guzman. The main limitation to our approach is the presence of singularities in the representation variety of the fundamental group of the complex; we illustrate this issue in the well-known case of two-dimensional manifolds.

Keywords

Foam Partition Function Modulus Space Gauge Transformation Heat Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Thiemann T.: Modern canonical quantum general relativity. Cambridge University Press, Cambridge (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Baez J.C.: An introduction to spin foam models of BF theory and quantum gravity. Lect. Notes Phys. 543, 25–94 (2000)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Perez, A.: The spin-foam-representation of loop quantum gravity. 2006, http://arxiv.org/abs/gr-qc/0601095dv1, 2006
  5. 5.
    Freidel L., Krasnov K.: Spin foam models and the classical action principle. Adv. Theor. Math. Phys. 2, 1183–1247 (1999)MathSciNetGoogle Scholar
  6. 6.
    Plebanski J.F.: On the separation of Einsteinian substructures. J. Math. Phys. 18, 2511–2520 (1977)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251–290 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Freidel L., Krasnov K.: A New Spin Foam Model for 4d Gravity. Class. Quant. Grav. 25, 125018 (2008)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Ponzano, G., Regge, T.: Semi-classical limit of Racah coefficients. Spectroscopic and group theoretical methods in physics (F. Bloch, ed.), Amsterdam: North-Holland, 1968Google Scholar
  10. 10.
    Perez A., Rovelli C.: A spin foam model without bubble divergences. Nucl. Phys. B 599, 255–282 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Freidel L., Louapre D.: Diffeomorphisms and spin foam models. Nucl. Phys. B 662(1–2), 279–298 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Freidel L., Gurau R., Oriti D.: Group field theory renormalization - the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Ben Geloun J., Krajewski T., Magnen J., Rivasseau V.: Linearized Group Field Theory and Power Counting Theorems. 2010, http://arxiv.org/abs/1002.3592dv1[hep-th], 2010
  14. 14.
    Bonzom V., Smerlak M.: Bubble divergences from cellular homology. Lett. Math. Phys. 93(3), 295–305 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Witten E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Goldman W.: The symplectic nature of fundamental groups. Adv. Math. 54, 200 (1984)MATHCrossRefGoogle Scholar
  17. 17.
    Turaev V.G., Viro O.Y.: State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865–902 (1992)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Crane L., Kauffman L.H., Yetter D.: Evaluating the Crane-Yetter invariant. 1993, http://arxiv.org/abs/hep-th/9309063dv1, 1993
  19. 19.
    Boulatov D.V.: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629–1646 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Ooguri H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Freidel L.: Group field theory: An overview. Int. J. Theor. Phys. 44, 1769–1783 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Oriti D.: The group field theory approach to quantum gravity. 2006, http://arxiv.org/abs/gr-qc/0607032dv3, 2006
  23. 23.
    Barrett J.W., Naish-Guzman I.: The Ponzano-Regge model. Class. Quant. Grav. 26, 155014 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Hog-Angeloni, C., Metzler, W., Sieradski, A.J. (eds.): Two-Dimensional Homotopy and Combinatorial Group Theory. London Mathematical Society Lecture Notes Series, Cambridge: Cambridge University Press, 1994Google Scholar
  25. 25.
    Blau M., Thompson G.: Topological gauge theories of antisymmetric tensor fields. Annals Phys. 205, 130–172 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Gurau R.: Colored Group Field Theory. Commun. Math. Phys. 304, 69–93 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Forman R.: Small volume limits of 2-d Yang-Mills. Commun. Math. Phys. 151, 39–52 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Plflaum, M.J.: Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics 1768, Berlin: Springer, 2001Google Scholar
  29. 29.
    Atiyah M.F., Bott R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. Roy. Soc. Lond. A 308, 523–615 (1982)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Sengupta A.: The volume measure for flat connections as limit of the Yang-Mills measure. J. Geom. Phys. 47(4), 398–426 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Witten E.: Topology-changing amplitudes in (2+1)-dimensional gravity. Nucl. Phys. B 323, 113–140 (1989)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Gegenberg J., Kunstatter G.: The Partition function for topological field theories. Ann. Phys. 231, 270–289 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Dubois J.: Private communicationGoogle Scholar
  34. 34.
    Turaev V.: Introduction to combinatorial torsions. Basel-Boston: Birkhauser, 2001Google Scholar
  35. 35.
    Cassanas R.: Unpublished notesGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Centre de Physique ThéoriqueCampus de LuminyMarseille Cedex 09France

Personalised recommendations