Communications in Mathematical Physics

, Volume 312, Issue 3, pp 781–831 | Cite as

Global Well-Posedness of the Energy-Critical Defocusing NLS on \({\mathbb{R} \times \mathbb{T}^3}\)

Article

Abstract

We prove global well-posedness in H 1 for the energy-critical defocusing initial-value problem \({(i\partial_t+\Delta_x)u=u|u|^2,\quad u(0)=\phi,}\) in the semiperiodic setting \({x\in\mathbb{R} \times \mathbb{T}^3}\) .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bourgain J.: Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal. 3, 157–178 (1993)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bourgain J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12, 145–171 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bourgain, J.: Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Preprint (2011), http://arxiv.org/abs/1107.1129v1 [math.CA], 2011
  5. 5.
    Burq N., Gérard P., Tzvetkov N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126, 569–605 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Burq N., Gérard P., Tzvetkov N.: Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. Math. 159, 187–223 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, New York: New York University, Courant Institute of Mathematical Sciences/Providence, RI: Amer. Math. Soc., 2003Google Scholar
  8. 8.
    Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^3}\) . Ann. of Math. 167, 767–865 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gérard P., Pierfelice V.: Nonlinear Schrödinger equation on four-dimensional compact manifolds. Bull. Soc. Math. France 138(1), 119–151 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    Grillakis M.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. 132, 485–509 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Grillakis M.: On nonlinear Schrödinger equations. Comm. Part. Diff. Eqs. 25, 1827–1844 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Herr, S.: The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds. Preprint (2011), http://arxiv.org/abs/1101.4565v3 [math.AP], 2011
  13. 13.
    Herr S., Tataru D., Tzvetkov N.: Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in H 1(T 3). Duke Math. J 159(2), 329–399 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Herr, S., Tataru, D., Tzvetkov, N.: Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications. Preprint (2010), http://arxiv.org/abs/1011.0591v1 [math.AP], 2010
  15. 15.
    Ionescu, A.D., Pausader, B.: The energy-critical defocusing NLS on \({\mathbb{T}^3}\) , Duke Math. J. (to appear).Google Scholar
  16. 16.
    Ionescu, A.D., Pausader, B., Staffilani, G.: On the global well-posedness of energy-critical Schrödinger equations in curved spaces. Analysis and PDE, to appearGoogle Scholar
  17. 17.
    Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Keraani S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Diff. Eqs. 175, 353–392 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ozawa T.: Long range scattering for nonlinear Schrdinger equations in one space dimension. Commun. Math. Phys. 139, 479–493 (1991)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Ryckman E., Visan M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^{1+4}}\) . Amer. J. Math. 129, 1–60 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    Shatah J., Struwe M.: Regularity results for nonlinear wave equations. Ann. of Math. 138, 503–518 (1993)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Takaoka H., Tzvetkov N.: On 2D Nonlinear Schrödinger equations with data on \({\mathbb{R} \times\mathbb{T} }\) . J. Funct. Anal. 182(2), 427–442 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Providence, RI: Amer. Math. Soc., 2006Google Scholar
  24. 24.
    Tzvetkov N., Visciglia N.: Small data scattering for the nonlinear Schrödinger equation on product spaces. Comm. Part. Diff. Eqs. 37(1), 125–135 (2012)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Visan M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations