Advertisement

Communications in Mathematical Physics

, Volume 316, Issue 2, pp 531–554 | Cite as

Subfactors of Index Less Than 5, Part 3: Quadruple Points

  • Masaki Izumi
  • Vaughan F. R. Jones
  • Scott Morrison
  • Noah Snyder
Article

Abstract

One major obstacle in extending the classification of small index subfactors beyond \({3 +\sqrt{3}}\) is the appearance of infinite families of candidate principal graphs with 4-valent vertices (in particular, the “weeds” \({\mathcal{Q}}\) and \({\mathcal{Q}'}\) from Part 1 (Morrison and Snyder in Commun. Math. Phys., doi: 10.1007/s00220-012-1426-y, 2012). Thus instead of using triple point obstructions to eliminate candidate graphs, we need to develop new quadruple point obstructions. In this paper we prove two quadruple point obstructions. The first uses quadratic tangles techniques and eliminates the weed \({\mathcal{Q}'}\) immediately. The second uses connections, and when combined with an additional number theoretic argument it eliminates both weeds \({\mathcal{Q}}\) and \({\mathcal{Q}'}\) . Finally, we prove the uniqueness (up to taking duals) of the 3311 Goodman-de la Harpe-Jones subfactor using a combination of planar algebra techniques and connections.

Keywords

Fusion Category Graph Automorphism Gauge Class Fusion Ring Quadruple Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH99]
    Asaeda, M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({(5+\sqrt{17})/2}\) . Commun. Math. Phys. 202(1), 1–63 (1999). http://arxiv.org/abs/math/9803044v5
  2. [AY09]
    Asaeda, M., Yasuda, S.: On Haagerup’s list of potential principal graphs of subfactors. Commun. Math. Phys. 286(3), 1141–1157 (2009). http://arxiv.org/abs/0711.4144v1 Google Scholar
  3. [Big10]
    Bigelow, S.: Skein theory for the ADE planar algebras. J. Pure Appl. Algebra 214(5), 658–666 (2010). http://arxiv.org/abs/0903.0144 Google Scholar
  4. [Bis94]
    Bisch, D.: On the structure of finite depth subfactors. In: Algebraic methods in operator theory, Boston, MA: Birkhäuser Boston, 1994, pp. 175–194Google Scholar
  5. [Bis98]
    Bisch D.: Principal graphs of subfactors with small Jones index. Math. Ann. 311(2), 223–231 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [BMPS09]
    Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. To appear Acta Mathematica, available at http://arxiv.org/abs/0909.4099v2 [math.OA], 2011
  7. [CG94]
    Coste A., Gannon T.: Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B 323(3-4), 316–321 (1994)MathSciNetADSCrossRefGoogle Scholar
  8. [CMS11]
    Calegari, F., Morrison, S., Snyder, N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011). http://arxiv.org/abs/1004.0665 Google Scholar
  9. [dBG91]
    de Boer J., Goeree J.: Markov traces and II 1 factors in conformal field theory. Commun. Math. Phys. 139(2), 267–304 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [EK98]
    Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press, 1998Google Scholar
  11. [ENO05]
    Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. of Math. (2) 162(2), 581–642 (2005). http://arxiv.org/abs/math/0203060 Google Scholar
  12. [GdlHJ89]
    Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras, Volume 14 of Mathematical Sciences Research Institute Publications. New York: Springer-Verlag, 1989Google Scholar
  13. [Gne02]
    Gnerre S.: An explicit formula for fusion rules. Int. Math. J. 1(1), 1–8 (2002)MathSciNetzbMATHGoogle Scholar
  14. [Gre10]
    Greenough, J.: Monoidal 2-structure of bimodule categories. J. Algebra 324(8), 1818–1859 (2010). http://arxiv.org/abs/0911.4979 Google Scholar
  15. [Haa94]
    Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] < 3 + \sqrt2}\) . In: Subfactors (Kyuzeso, 1993). River Edge, NJ: World Sci. Publ., 1994, pp. 1–38Google Scholar
  16. [Izu01]
    Izumi M.: The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Jon99]
    Jones, V.F.R.: Planar algebras, I. http://arxiv.org/abs/math/9909027v1 [math.OA], 1999
  18. [Jon01]
    Jones, V.F.R.: The annular structure of subfactors. In: Essays on geometry and related topics, Vol. 1, 2, Volume 38 of Monogr. Enseign. Math. Geneva: Enseignement Math., 2001, pp. 401–463Google Scholar
  19. [Jon03]
    Jones, V.F.R.: Quadratic tangles in planar algebras, 2003, available at http://arxiv.org/abs/1007.1158v2 [math.OA], 2010
  20. [Kaw95]
    Kawahigashi Y.: Classification of paragroup actions in subfactors. Publ. Res. Inst. Math. Sci. 31(3), 481–517 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [KL94]
    Kauffman, L.H., Lins, S.L.: Temperley-Lieb recoupling theory and invariants of 3-manifolds, Volume 134 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 1994Google Scholar
  22. [KS01]
    Kodiyalam V., Sunder V.S.: Flatness and fusion coefficients. Pacific J. Math. 201(1), 177–204 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [MPPS10]
    Morrison, S., Penneys, D., Peters, E., Snyder, N.: Classification of subfactors of index less than 5, part 2: triple points. International Journal of Mathematics, 2010. http://arxiv.org/abs/1007.2240v2, accepted June 28 2011, doi: 10.1142/S0129167x11007586, 2012
  24. [MS10]
    Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys., 2010. http://arxiv.org/abs/1007.1730, accepted June 28 2011, doi: 10.1007/s00220-012-1426-y, 2012
  25. [Ocn88]
    Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, Vol. 2, Volume 136 of London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 1988, pp. 119–172Google Scholar
  26. [Ocn01]
    Ocneanu, A.: Operator algebras, topology and subgroups of quantum symmetry—construction of subgroups of quantum groups. In: Taniguchi Conference on Mathematics Nara ’98, Volume 31 of Adv. Stud. Pure Math., Tokyo: Math. Soc. Japan, 2001, pp. 235–263Google Scholar
  27. [PT10]
    Penneys, D., Tener, J.: Classification of subfactors of index less than 5, part 4: cyclotomicity. International Journal of Mathematics, 2010, accepted June 28 2011, available at http://arxiv.org/abs/1010.3797v2 [math.OA], 2011
  28. [TW05]
    Tuba, I., Wenzl, H.: On braided tensor categories of type BCD. J. Reine Angew. Math. 581, 31–69 (2005). http://arxiv.org/abs/math/0301142 Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Masaki Izumi
    • 1
  • Vaughan F. R. Jones
    • 2
  • Scott Morrison
    • 2
  • Noah Snyder
    • 3
  1. 1.Department of Mathematics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations