Advertisement

Communications in Mathematical Physics

, Volume 313, Issue 1, pp 257–290 | Cite as

The Operator Product Expansion Converges in Perturbative Field Theory

  • Stefan Hollands
  • Christoph KopperEmail author
Article

Abstract

We show, within the framework of the massive Euclidean \({\varphi^4}\) -quantum field theory in four dimensions, that the Wilson operator product expansion (OPE) is not only an asymptotic expansion at short distances as previously believed, but even converges at arbitrary finite distances. Our proof rests on a detailed estimation of the remainder term in the OPE, of an arbitrary product of composite fields, inserted as usual into a correlation function with further “spectator fields”. The estimates are obtained using a suitably adapted version of the method of renormalization group flow equations. Convergence follows because the remainder is seen to become arbitrarily small as the OPE is carried out to sufficiently high order, i.e. to operators of sufficiently high dimension. Our results hold for arbitrary, but finite, loop orders. As an interesting side-result of our estimates, we can also prove that the “gradient expansion” of the effective action is convergent.

Keywords

Renormalization Group Normal Product Formal Power Series Operator Product Expansion Loop Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guida, R., Kopper, Ch.: All order uniform momentum bounds for massless Euclidean \({\phi_4^4}\) Theory. To appearGoogle Scholar
  2. 2.
    Hollands S.: Quantum field theory in terms of consistency conditions. I. General framework, and perturbation theory via Hochschild cohomology. Sigma 5, 090 (2009)MathSciNetGoogle Scholar
  3. 3.
    Hollands S., Olbermann H.: Perturbative Quantum Field Theory via Vertex Algebras. J. Math. Phys. 50, 112304 (2009)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Hollands S., Wald R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–312 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Duetsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys 16(10), 1291–1348 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Keller G., Kopper Ch.: Perturbative Renormalization of Composite Operators via Flow Equations I. Commun. Math. Phys. 148, 445–467 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Keller G., Kopper Ch.: Perturbative Renormalization of Composite Operators via Flow Equations II, Short distance expansion. Commun. Math. Phys. 153, 245–276 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Keller G., Kopper Ch., Salmhofer M.: Perturbative renormalization and effective Lagrangians in \({\phi_4^4}\) . Helv. Phys. Acta 156, 32–52 (1992)MathSciNetGoogle Scholar
  10. 10.
    Kopper Ch., Meunier F.: Large momentum bounds from Flow equations. Ann. Henri Poincaré 3, 435–450 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kopper Ch., Müller V.F., Reisz Th.: Temperature Independent Renormalization of Finite Temperature Field Theory. Ann. Henri Poincaré 2, 387–402 (2001)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Kopper Ch.: On the local Borel Transform of Perturbation Theory. Commun. Math. Phys. 295, 669–699 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Kopper, Ch.: Renormierungstheorie mit Flußgleichungen. Aachen: Shaker Verlag, 1998Google Scholar
  14. 14.
    Müller V.F.: Perturbative Renormalization by Flow Equations. Rev. Math. Phys. 15, 491–557 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Polchinski J.: Renormalization and Effective Lagrangians. Nucl. Phys. B231, 269–295 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    Sansone G.: Orthogonal Functions. Dover Publications, London-New York (2004)Google Scholar
  17. 17.
    Wegner F., Houghton A.: Renormalization Group Equations for Critical Phenomena. Phys. Rev. A8, 401–412 (1973)ADSGoogle Scholar
  18. 18.
    Wilson K.: Renormalization group and critical phenomena I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B4, 3174–3183 (1971)ADSGoogle Scholar
  19. 19.
    Wilson K.: Renormalization group and critical phenomena II. Phase cell analysis of critical behaviour. Phys. Rev. B4, 3184–3205 (1971)ADSGoogle Scholar
  20. 20.
    Zimmermann, W.: Local operator products and renormalization in quantum field theory. In: Lectures on Elementary Particles and Quantum Field Theory, Brandeis Summer Institute 1970, S. Deser, M. Grisaru, H. Pendleton, eds., Cambridge, MA: MIT Press, 1970Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of MathematicsCardiff UniversityCardiffUK
  2. 2.Centre de Physique Théorique, CNRS, UMR 7644, Ecole PolytechniquePalaiseauFrance

Personalised recommendations