Communications in Mathematical Physics

, Volume 311, Issue 1, pp 191–213 | Cite as

Completeness in Supergravity Constructions

Article

Abstract

We prove that the supergravity r- and c-maps preserve completeness. As a consequence, any component \({\mathcal{H}}\) of a hypersurface {h = 1} defined by a homogeneous cubic polynomial h such that \({-\partial^2h}\) is a complete Riemannian metric on \({\mathcal{H}}\) defines a complete projective special Kähler manifold and any complete projective special Kähler manifold defines a complete quaternionic Kähler manifold of negative scalar curvature. We classify all complete quaternionic Kähler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseevskiĭ D.V.: Classification of quaternionic spaces with transitive solvable group of motions. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 315–362 (1975)MathSciNetMATHGoogle Scholar
  2. 2.
    Alekseevsky D.V., Cortés V.: Classification of stationary compact homogeneous special pseudo Kähler manifolds of semisimple groups. Proc. London Math. Soc. 81(3), 211–230 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alekseevsky D.V., Cortés V.: Geometric construction of the r-map: from affine special real to special Kähler manifolds. Commun. Math. Phys. 291, 579–590 (2009)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Alekseevsky D.V., Cortés V., Devchand C.: Special complex manifolds. J. Geom. Phys. 42, 85–105 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Antoniadis I., Ferrara S., Gava E., Narain K., Taylor T.: Perturbative prepotential and monodromies in N = 2 heterotic superstring. Nucl. Phys. B447, 35–61 (1995)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Antoniadis I., Ferrara S., Taylor T.: N = 2 heterotic superstring and its dual theory in five dimensions. Nucl. Phys. B460, 489–505 (1996)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Chou A., Kallosh R., Rahmfeld J., Rey S.-J., Shmakova M., Wong W.K.: Critical points and phase transitions in 5d compactifications of M-theory. Nucl. Phys. B508, 147–180 (1997)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Cecotti S., Ferrara S., Girardello L.: Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A4, 2475 (1989)MathSciNetADSGoogle Scholar
  9. 9.
    Cortés V.: Alekseevskian spaces. J. Diff. Geom. Appl. 6(2), 129–168 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Cortés V.: On hyper Kähler manifolds associated to Lagrangian Kähler submanifolds of \({T^*\mathbb{C}^n}\). Trans. Amer. Math. Soc. 350(8), 3193–3205 (1998)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cortés, V.: A holomorphic representation formula for parabolic hypersphere. In: Opozda, B., Simon, U., Wiehe, M. (eds.) Proceedings of the International Conference “PDEs, Submanifolds and Affine Differential Geometry” (Warsaw 2000), Banach Center Publications (Polish Academy of Sciences, Institute of Mathematics), Vol. 54, 2000. pp. 11–16. Available at http://arxiv.org/abs/0107037v2 [math.D6], 2001
  12. 12.
    Cortés V., Mohaupt T.: Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes. JHEP 07, 066 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Cortés V., Mayer C., Mohaupt T., Saueressig F.: Special geometry of Euclidean supersymmetry II: hypermultiplets and the c-map. JHEP 06, 025 (2006)ADSGoogle Scholar
  14. 14.
    Cortés, V., Schäfer, L.: Topological-antitopological fusion equations, pluriharmonic maps and special Kähler manifolds. In: Kowalski, O., Musso, E., Perrone, D. (eds.) Complex, Contact and Symmetric Manifolds, Progress in Mathematics 234, Basel-Boston: Birkhäuser, 2005, pp. 59–74Google Scholar
  15. 15.
    Cremmer E., Kounnas C., Van Proeyen A., Derendinger J.P., Ferrara S., de Wit B., Girardello L.: Vector multiplets, coupled to N = 2 supergravity: SuperHiggs effect, flat potentials and geometric structure. Nucl. Phys. B250, 325 (1985)Google Scholar
  16. 16.
    De Jaehger J., de Wit B., Kleijn B., Vandoren S.: Special geometry in hypermultiplets. Nucl. Phys. B514, 553–582 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    de Wit B.: N = 2 electric-magnetic duality in a chiral background. Nucl. Phys. Proc. Suppl. 49, 191–200 (1996)ADSMATHCrossRefGoogle Scholar
  18. 18.
    de Wit B., Rocek M., Vandoren S.: Hypermultiplets, hyperkähler cones and quaternion-Kähler geometry. JHEP 02, 039 (2001)CrossRefGoogle Scholar
  19. 19.
    de Wit B., Saueressig F.: Off-shell N = 2 tensor supermultiplets. JHEP 09, 062 (2006)CrossRefGoogle Scholar
  20. 20.
    de Wit B., Van Proeyen A.: Potentials and symmetries of general gauged N=2 supergravity-Yang-Mills models. Nucl. Phys. B245, 89–117 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    de Wit B., Van Proeyen A.: Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307–333 (1992)ADSMATHCrossRefGoogle Scholar
  22. 22.
    Ferrara S., Sabharwal S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B332, 317–332 (1990)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Freed D.: Special Kähler manifolds. Commun. Math. Phys. 203, 31–52 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Robles-Llana D., Saueressig F., Vandoren S.: String loop corrected hypermultiplet moduli spaces. JHEP 03, 081 (2006)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Alexandrov S., Saueressig F., Vandoren S.: Membrane and fivebrane instantons from quaternionic geometry. JHEP 09, 040 (2006)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Robles-Llana D., Rocek M., Saueressig F., Theis U., Vandoren S.: Nonperturbative corrections to 4D string effective actions from \({SL(2,\mathbb{Z})}\) duality and supersymmetry. Phys. Rev. Lett. 98, 211602 (2007)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Alexandrov S., Pioline B., Saueressig F., Vandoren S.: D-instantons and twistors. JHEP 03, 044 (2009)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Hitchin, N.: Quaternionic Kähler moduli spaces. In: Galicki, K., Simanca, S. (eds.) Riemannian Topology and Geometric Structures on Manifolds, Progress in Mathematics 271, Basel-Boston: Birkhäuser, 2009, pp. 49–61Google Scholar
  30. 30.
    Kachru S., Klemm A., Lerche W., Mayr P., Vafa C.: Nonperturbative results on the point particle limit of N = 2 heterotic string compactifications. Nucl. Phys. B459, 537–558 (1996)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Kachru S., Vafa C.: Exact results for N = 2 compactifications of heterotic strings. Nucl. Phys. B450, 69–89 (1995)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Louis J., Sonnenschein J., Theisen S., Yankielowicz S.: Non-perturbative properties of heterotic string vacua compactifications. Nucl. Phys. B480, 185–212 (1996)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Mayer C., Mohaupt T.: The Kähler cone as cosmic censor. Class. Quant. Grav. 21, 1879–1896 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Morrison D.R., Vafa C.: Compactifications of F-theory on Calabi-Yau threefolds. Nucl. Phys. B473, 74–92 (1996)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    O’Neill, B.: Semi-Riemannian geometry, With applications to relativity. Pure and Applied Mathematics, 103, New York: Academic Press, 1983Google Scholar
  36. 36.
    Rocek M., Vafa C., Vandoren S.: Hypermultiplets and topological strings. JHEP 02, 062 (2005)ADSGoogle Scholar
  37. 37.
    Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. In: Mathematical aspects of string theory, Adv. Ser. Math. Phys., Vol. 1, Singapore: World Sci. Publishing, 1987, pp. 629–646Google Scholar
  38. 38.
    van der Aalst, T.A.F.: A geometric interpretation of the c-map. Master Thesis, University of Utrecht, 2008Google Scholar
  39. 39.
    Wells, R.O.: Differential analysis on complex manifolds. Graduate Texts in Mathematics 65, New York: Springer, 2008Google Scholar
  40. 40.
    Witten E.: Phase transitions in M-theory and F-theory. Nucl. Phys. B471, 195–216 (1996)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Center for Mathematical PhysicsUniversity of HamburgHamburgGermany
  2. 2.Theoretical Physics Division, Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations