Advertisement

Communications in Mathematical Physics

, Volume 311, Issue 2, pp 423–455 | Cite as

A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule

  • U. Boscain
  • M. Caponigro
  • T. Chambrion
  • M. Sigalotti
Article

Abstract

In this paper we prove an approximate controllability result for the bilinear Schrödinger equation. This result requires less restrictive non-resonance hypotheses on the spectrum of the uncontrolled Schrödinger operator than those present in the literature. The control operator is not required to be bounded and we are able to extend the controllability result to the density matrices. The proof is based on fine controllability properties of the finite dimensional Galerkin approximations and allows to get estimates for the L 1 norm of the control. The general controllability result is applied to the problem of controlling the rotation of a bipolar rigid molecule confined on a plane by means of two orthogonal external fields.

Keywords

Wave Function Density Matrice Admissible Control Controllability Result Piecewise Constant Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrachev A., Chambrion T.: An estimation of the controllability time for single-input systems on compact Lie groups. ESAIM Control Optim. Calc. Var. 12(3), 409–441 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint. In: Control Theory and Optimization, II, Volume 87 of Encyclopaedia of Mathematical Sciences. Berlin, Springer-Verlag, 2004Google Scholar
  3. 3.
    Ball J.M., Marsden J.E., Slemrod M.: Controllability for distributed bilinear systems. SIAM J. Control Optim. 20(4), 575–597 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beauchard K.: Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84(7), 851–956 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Beauchard K., Coron J.-M.: Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232(2), 328–389 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beauchard K., Laurent C.: Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. 94(5), 520–554 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beauchard K., Mirrahimi M.: Practical stabilization of a quantum particle in a one-dimensional infinite square potential well. SIAM J. Control Optim. 48(2), 1179–1205 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beauchard K., Nersesyan V.: Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 348(19-20), 1073–1078 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bloch A.M., Brockett R.W., Rangan C.: Finite controllability of infinite-dimensional quantum systems. IEEE Trans. Automat. Control 55(8), 1797–1805 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chambrion, T.: Simultaneous approximate tracking of density matrices for a system of Schroedinger equations. http://arXiv.org/abs/0902.3798v1 [math.OC], 2009
  11. 11.
    Chambrion T., Mason P., Sigalotti M., Boscain U.: Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 329–349 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Chambrion T., Munnier A.: On the locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlin. Sci. 21(3), 325–385 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    D’Alessandro D.: Introduction to quantum control and dynamics Applied Mathematics and Nonlinear Science Series. Boca Raton, FL, Chapman, Hall/CRC (2008)Google Scholar
  14. 14.
    Ervedoza S., Puel J.-P.: Approximate controllability for a system of Schrödinger equations modeling a single trapped ion. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2111–2136 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Ito K., Kunisch K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control Optim. 46(1), 274–287 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jakubczyk, B.: Introduction to geometric nonlinear control; controllability and Lie bracket. In: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Trieste: Abdus Salam Int. Cent. Theoret. Phys., 2002, pp. 107–168Google Scholar
  17. 17.
    Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. New York: Springer-Verlag New York, Inc., 1966Google Scholar
  18. 18.
    Law C.K., Eberly J.H.: Arbitrary control of a quantum electro-magnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Mason P., Sigalotti M.: Generic controllability properties for the bilinear Schrödinger equation. Comm. Part. Diff. Eqs. 35, 685–706 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mirrahimi M.: Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1743–1765 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Nersesyan V.: Growth of Sobolev norms and controllability of the Schrödinger equation. Comm. Math. Phys. 290(1), 371–387 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Nersesyan V.: Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 901–915 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Nersesyan, V., Nersisyan, H.: Global exact controllability in infinite time of Schrödinger equation. Accepted for publication in J. Math. Pures Appl., 2011. doi: 10/1016/j.matpur.2011.11.005
  24. 24.
    Privat Y., Sigalotti M.: Erratum of “The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent”. ESAIM Control Optim. Calc. Var. 16(3), 806–807 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Privat Y., Sigalotti M.: The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM Control Optim. Calc. Var. 16(3), 794–805 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sachkov Y.L.: Controllability of invariant systems on Lie groups and homogeneous spaces. J. Math. Sci. (New York) 100(4), 2355–2427 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Seideman T., Hamilton E.: Nonadiabatic alignment by intense pulses: concepts, theory and directions. Adv. At. Mol. Opt. Phys. 52, 289 (2006)CrossRefGoogle Scholar
  28. 28.
    Spanner M., Shapiro E.A., Ivanov M.: Coherent control of rotational wave-packet dynamics via fractional revivals. Phys. Rev. Lett. 92, 093001 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Stapelfeldt H., Seideman T.: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Turinici G.: On the controllability of bilinear quantum systems. In: Defranceschi, M., Le Bris, C. (eds) Mathematical models and methods for ab initio Quantum Chemistry, Volume 74 of Lecture Notes in Chemistry, Springer, Berlin-Heidelberg-NewYork (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • U. Boscain
    • 1
    • 2
    • 3
  • M. Caponigro
    • 4
    • 5
  • T. Chambrion
    • 4
    • 5
  • M. Sigalotti
    • 2
    • 3
  1. 1.Centre National de la Recherche Scientifique (CNRS)
  2. 2.CMAP, École PolytechniquePalaiseau CedexFrance
  3. 3.INRIA, Centre de Recherche Saclay, Team GECO
  4. 4.INRIA, Centre de Recherche Nancy-Grand Est, Team CORIDA
  5. 5.Institut Élie Cartan, UMR 7502 Nancy-Université/CNRSVandœuvre-lès-NancyFrance

Personalised recommendations