Communications in Mathematical Physics

, Volume 311, Issue 1, pp 55–96

A Kohno–Drinfeld Theorem for the Monodromy of Cyclotomic KZ Connections

Article

DOI: 10.1007/s00220-012-1424-0

Cite this article as:
Brochier, A. Commun. Math. Phys. (2012) 311: 55. doi:10.1007/s00220-012-1424-0

Abstract

We compute explicitly the monodromy representations of “cyclotomic” analogs of the Knizhnik–Zamolodchikov differential system. These are representations of the type B braid group \({B_n^1}\) . We show how the representations of the braid group Bn obtained using quantum groups and universal R-matrices may be enhanced to representations of \({B_n^1}\) using dynamical twists. Then, we show how these “algebraic” representations may be identified with the above “analytic” monodromy representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.IRMA (CNRS), rue René DescartesStrasbourgFrance

Personalised recommendations