Advertisement

Communications in Mathematical Physics

, Volume 310, Issue 3, pp 765–788 | Cite as

Bose Condensates in Interaction with Excitations: A Kinetic Model

  • Leif ArkerydEmail author
  • Anne Nouri
Article

Abstract

This paper deals with mathematical questions for Bose gases below the temperature T BEC where Bose-Einstein condensation sets in. The model considered is of two-component type, consisting of a kinetic equation for the distribution function of a gas of (quasi-)particles interacting with a Bose condensate, which is described by a Gross-Pitaevskii equation. Existence results and moment estimates are proved in the space-homogeneous, isotropic case.

Keywords

Nonnegative Solution Collision Operator Bose Condensate Excitation Density Condensate Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BCEP.
    Benedetto D., Castella F., Esposito R., Pulvirenti M.: Some considerations on the derivation of the nonlinear quantum Boltzmann equation II. J. Stat. Phys. 124, 951–966 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. E.
    Eckern U.: Relaxation processes in a condensate Bose gas. J. Low Temp. Phys. 54, 333–359 (1984)ADSCrossRefGoogle Scholar
  3. EMV.
    Escobedo, M., Mischler, S., Valle, M.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electronic J. Diff. Eqns., Monograph 04 (2003)Google Scholar
  4. EPV.
    Escobedo M., Pezzotti F., Valle M.: Analytical approach to relaxation dynamics of condensed Bose gases. Ann. Phys. 326, 808–827 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. IT.
    Imamovic-Tomasovic, M., Kadanoff-Baym, L.: Kinetic theory for a trapped Bose condensate gas. Thesis. Univ. Toronto, 2001Google Scholar
  6. ITG.
    Imamovic-Tomasovic M., Griffin A.: Quasi-particle kinetic equation in a trapped Bose gas at low temperature. J. Low Temp. Phys. 122, 617–655 (2001)CrossRefGoogle Scholar
  7. HM.
    Hohenberg P., Martin P.: Microscopic theory of superfluid helium. Ann. Phys. 34, 291–359 (1965)ADSCrossRefGoogle Scholar
  8. K.
    Khalatnikov I.M.: Theory of superfluidity (in Russian). Moskva, Nauka (1971)Google Scholar
  9. KD.
    Kirkpatrick T.R., Dorfman J.R.: Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58, 301–331 (1985)ADSCrossRefGoogle Scholar
  10. KK.
    Kane J., Kadanoff L.: Green’s functions and superfluid hydrodynamics. J. Math. Phys. 6, 1902–1912 (1965)ADSCrossRefGoogle Scholar
  11. N.
    Nouri A.: Bose-Einstein condensates at very low temperatures. A mathematical result in the isotropic case. Bull. Inst. Math. Acad. Sin. 2, 649–666 (2007)MathSciNetzbMATHGoogle Scholar
  12. PS.
    Pitaevski L., Stringari S.: Bose-Einstein condensation. Oxford, Oxford Univ. Press (2003)Google Scholar
  13. ST.
    Semikoz D., Tkachev J.: Condensation of bosons in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)CrossRefGoogle Scholar
  14. S1.
    Spohn H.: Kinetic equations for quantum many-particle systems, Modern encyclopedia of mathematical physics. Berlin-Heidelberg-New York, Springer (2007)Google Scholar
  15. S2.
    Spohn H.: Kinetics of the Bose-Einstein condensation. Physica D 239, 627–634 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. ZNG.
    Zaremba E., Nikuni T., Griffin A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Mathematical SciencesChalmers UniversityGöteborgSweden
  2. 2.LATPAix-Marseille UniversityMarseille Cedex 13France

Personalised recommendations