Communications in Mathematical Physics

, Volume 309, Issue 1, pp 51–86

On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background

Article

Abstract

We prove sharp pointwise t−3 decay for scalar linear perturbations of a Schwarzschild black hole without symmetry assumptions on the data. We also consider electromagnetic and gravitational perturbations for which we obtain decay rates t−4, and t−6, respectively. We proceed by decomposition into angular momentum ℓ and summation of the decay estimates on the Regge-Wheeler equation for fixed . We encounter a dichotomy: the decay law in time is entirely determined by the asymptotic behavior of the Regge-Wheeler potential in the far field, whereas the growth of the constants in is dictated by the behavior of the Regge-Wheeler potential in a small neighborhood around its maximum. In other words, the tails are controlled by small energies, whereas the number of angular derivatives needed on the data is determined by energies close to the top of the Regge-Wheeler potential. This dichotomy corresponds to the well-known principle that for initial times the decay reflects the presence of complex resonances generated by the potential maximum, whereas for later times the tails are determined by the far field. However, we do not invoke complex resonances at all, but rely instead on semiclassical Sigal-Soffer type propagation estimates based on a Mourre bound near the top energy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 edition. New York: Dover Publications, Inc., 1992Google Scholar
  2. 2.
    Alexandrova I., Bony J., Ramond T.: Resolvent and scattering matrix at the maximum of the potential. Serdica Math. J 34(1), 267–310 (2008)MATHMathSciNetGoogle Scholar
  3. 3.
    Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress in Mathematics, 135. Basel: Birkhäuser Verlag, 1996Google Scholar
  4. 4.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Preprint http://arXiv.org/abs/0908.2265v2 [math.AP], 2009
  5. 5.
    Balogh C.B.: Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math 15, 1315–1323 (1967)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bony, J.-F., Fujiié, S., Ramond, T., Zerzeri, M.: Microlocal solutions of Schrödinger equations at a maximum point of the potential, Preprint 2009Google Scholar
  7. 7.
    Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric. Commun. Math.Phys. 282(3), 697–719 (2008)CrossRefMATHADSGoogle Scholar
  8. 8.
    Briet P., Combes J.-M., Duclos P.: On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances. Comm. Par. Diff. Eqs 12(2), 201–222 (1987)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Costin, O., Donninger, R., Schlag, W., Tanveer, S.: Semiclassical low energy scattering for one-dimensional Schrödinger operators with exponentially decaying potentials. To appear in Annales Henri Poincaré. http://arXiv.org/abs/1105.4221v1 [math.SP], 2011
  10. 10.
    Costin O., Schlag W., Staubach W., Tanveer S.: Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. J. Funct. Anal. 255(9), 2321–2362 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Preprint 2008, http://arXiv.org/abs/0811.0354v1 [gr-qc], 2008
  12. 12.
    Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math 62(7), 859–919 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math 185, 467–559 (2011)CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases |a| < < M or axisymmetry. Preprint http://arXiv.org/abs/1010.5132v1 [gr-qc], 2010
  15. 15.
    Davies E.B.: Spectral Theory and Differential Operators. Cambridge Univ. Press, Cambridge (1995)CrossRefGoogle Scholar
  16. 16.
    Donninger R., Schlag W.: Decay estimates for the one-dimensional wave equation with an inverse power potential. Int. Math. Res. Not. 2010(22), 4276–4300 (2010)MATHMathSciNetGoogle Scholar
  17. 17.
    Donninger R., Schlag W., Soffer A.: A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226(1), 484–540 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys 264(2), 465–503 (2006)CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    Gérard C., Grigis A.: Precise estimates of tunneling and eigenvalues near a potential barrier. J. Diff. Eqs 72(1), 149–177 (1988)CrossRefMATHGoogle Scholar
  20. 20.
    Graf G.: The Mourre estimate in the semiclassical limit. Lett. Math. Phys. 20(1), 47–54 (1990)CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    Gustafson S., Sigal I.M.: Mathematical concepts of quantum mechanics. Springer-Verlag, Universitext Berlin (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Hawking S., Ellis G.: The large scale structure of space-time Cambridge Monographs on Mathematical Physics No 1. Cambridge University Press, London-New York (1973)Google Scholar
  23. 23.
    Helffer, B., Sjöstrand, J.: Semiclassical analysis of Harper’s equation III. Bull. Soc. Math. France, Memoire 39, 1990Google Scholar
  24. 24.
    Hislop P., Nakamura S.: Semiclassical resolvent estimates. Ann.Inst. H. Poincaré Phys. Théor 51(2), 187–198 (1989)MATHMathSciNetGoogle Scholar
  25. 25.
    Hunziker W., Sigal I.M.: Time-dependent scattering theory of N-body quantum systems. Rev. Math. Phys. 12(8), 1033–1084 (2000)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Hunziker W., Sigal I.M., Soffer A.: Minimal escape velocities. Comm. Par. Diff. Eqs 24(11–12), 2279–2295 (1999)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Ivrii V.Ja., Sigal I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. of Math 138(2), 243–335 (1993)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Kay B., Wald R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Class. Quan. Grav 4(4), 893–898 (1987)CrossRefMATHADSMathSciNetGoogle Scholar
  29. 29.
    Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys 293(1), 37–83 (2010)CrossRefMATHADSMathSciNetGoogle Scholar
  30. 30.
    Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s Law on Nonstationary Spacetimes. Preprint http://arXiv.org/abs/1104.5437v2 [math.AP], 2011
  31. 31.
    Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)CrossRefMATHADSMathSciNetGoogle Scholar
  32. 32.
    Luk, J.: A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole. Preprint, http://arXiv.org/abs/1009.0671v2 [gr-qc], 2011
  33. 33.
    Miller, P.D.: Applied asymptotic analysis. Graduate Studies in Mathematics, 75. Providence, RI: Amer. Math. Soc., 2006Google Scholar
  34. 34.
    Nakamura S.: Semiclassical resolvent estimates for the barrier top energy. Commun. Par. Diff. Eq. 16(4/5), 873–883 (1991)CrossRefMATHGoogle Scholar
  35. 35.
    Olver, F.W.J.: Asymptotics and Special Functions, Wellesley, MA: A K Peters, Ltd. 1997Google Scholar
  36. 36.
    Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391–408 (1980/81)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Price R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5(3), 2419–2438 (1972)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Price R.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields. Phys. Rev. D 5(3), 2439–2454 (1972)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Ramond T.: Semiclassical study of quantum scattering on the line. Commun. Math. Phys. 177(1), 221–254 (1996)CrossRefMATHADSMathSciNetGoogle Scholar
  40. 40.
    Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I. Trans. Amer. Math. Soc. 362(1), 19–52 (2010)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II. Trans. Amer. Math. Soc. 362(1), 289–318 (2010)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Sigal I.M., Soffer A.: Long-range many-body scattering. Invent. Math 99, 115–143 (1990)CrossRefMATHADSMathSciNetGoogle Scholar
  43. 43.
    Sigal, I.M., Soffer, A.: Local decay and velocity bounds. Preprint, Princeton University, 1988Google Scholar
  44. 44.
    Sjöstrand, J.: Semiclassical Resonances Generated by Nondegenerate Critical Points. In: Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin: Springer-Verlag, 1987, pp. 402–429Google Scholar
  45. 45.
    Skibsted E.: Propagation estimates for N-body Schroedinger operators. Commun. Math. Phys 142(1), 67–98 (1991)CrossRefMATHADSMathSciNetGoogle Scholar
  46. 46.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times, Preprint 2009, http://arXiv.org/abs/0910.5290v2 [math.AP], 2010
  47. 47.
    Tataru D., Tohaneanu M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011(2), 248–292 (2011)MATHMathSciNetGoogle Scholar
  48. 48.
    Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Preprint http://arXiv.org/abs/0910.1545v1 [math.AP], 2009
  49. 49.
    Wald R.: General relativity. University of Chicago Press, Chicago, IL (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations