Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation
- 180 Downloads
- 8 Citations
Abstract
We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi–infinite interval and to matrix integral operators with a kernel of the form \({\frac{E_1^T(\lambda) E_2(\mu)}{\lambda+\mu}}\), thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé II. Such a solution plays the same role as its commutative counterpart relative to the Tracy–Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.
Keywords
Convolution Operator Trace Class Hilbert Problem Resolvent Operator Fredholm DeterminantPreview
Unable to display preview. Download preview PDF.
References
- 1.Balandin S.P., Sokolov V.V.: On the Painlevé test for non-abelian equations. Phys. Lett. A 246(3-4), 267–272 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 2.Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 3.Bertola, M., Cafasso, M.: The Riemann-Hilbert approach to the transition between the gap probabilities from the Pearcey to the Airy process. Int. Math. Res. Not., doi: 10.1093/imrn/rnr066, 2011
- 4.Clarkson P.A., Joshi N., Pickering A.: Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Problems 15(1), 175–187 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 5.Dyson F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47(2), 171–183 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 6.Ferrari P.L., Spohn H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A 38(33), L557–L561 (2005)MathSciNetADSCrossRefGoogle Scholar
- 7.Forrester, P.J.: Log-gases and random matrices. London Math. Soc. Monograph Series 34. Princeton, NJ: Princeton University Press, 2010Google Scholar
- 8.Gelfand I., Gelfand S., Retakh V., Wilson R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Harnad J., Its A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226(3), 497–530 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 10.Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rat. Mech. Anal. 73(1), 31–51 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Its, A., Kapaev, A.: The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the complex domain. Volume 23 of Progr. Math. Phys. Boston, MA: Birkhäuser Boston, 2002Google Scholar
- 12.Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Presented at the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Int. J. Mod. Phys. B. V. 4, 1003–1037 (1990)MathSciNetzbMATHGoogle Scholar
- 13.Its A.R., Kapaev A.A.: Quasi-linear stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363–386 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 14.Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2(3), 407–448 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Phys. D 4(1), 26–46 (1981/82)Google Scholar
- 16.Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function. Phys. D 2(2), 306–352 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Kajiwara K., Masuda T.: A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations. J. Phys. A 32(20), 3763–3778 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 18.Mehta, M.L.: Random matrices. Volume 142 of Pure and Applied Mathematics (Amsterdam), 3rd ed., Amsterdam: Elsevier/Academic Press, 2004Google Scholar
- 19.Palmer J.: Zeros of the Jimbo, Miwa, Ueno tau function. J. Math. Phys. 40(12), 6638–6681 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 20.Retakh V., Rubtsov V.: Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation. J. Phys. A: Math. Theor. 43, 505204 (2010)MathSciNetCrossRefGoogle Scholar
- 21.Simon, B.: Trace ideals and their applications. Volume 120 of Mathematical Surveys and Monographs 2nd ed., Providence, RI: American Mathematical Society, 2005Google Scholar
- 22.Soshnikov A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)MathSciNetGoogle Scholar
- 23.Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 24.Tracy C.A., Widom H.: Fredholm determinants and the mKdV/sinh-Gordon hierarchies. Commun. Math. Phys. 179(1), 1–9 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 25.Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover Publications Inc., 1987, reprint of the 1976 editionGoogle Scholar