Communications in Mathematical Physics

, Volume 309, Issue 3, pp 835–871

Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

  • Sven Bachmann
  • Spyridon Michalakis
  • Bruno Nachtergaele
  • Robert Sims
Article
  • 303 Downloads

Abstract

Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. I, II. Commun. Math. Phys. 134, 1–27 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Albanese C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. III, IV. Commun. Math. Phys. 134, 237–272 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Amour L., Levy-Bruhl P., Nourrigat J.: Dynamics and Lieb-Robinson estimates for lattices of interacting anharmonic oscillators. Colloq. Math. 118, 609–648 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baillie R., Borwein D., Borwein J.M.: Surprising Sinc Sums and Integrals. Am. Math. Mon. 115, 888–901 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Birman M.S., Solomyak M.: Double Operator Integrals in a Hilbert Space. Integr. Eq. Oper. Th. 47, 131–168 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Borgs C., Kotecký R., Ueltschi D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181, 409–446 (1996)ADSMATHCrossRefGoogle Scholar
  7. 7.
    Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Bravyi, S., Hastings, M.: A short proof of stability of topological order under local perturbations. http://arxiv.org/abs/1001.4363v1 [math-ph], 2010
  9. 9.
    Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order. Phys. Rev. Lett. 97, 050401 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Chen X., Gu Z.-C., Wen X.-G.: Classification of Gapped Symmetric Phases in 1D Spin Systems. Phys. Rev. B 83, 035107 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Cramer, M., Serafini, A., Eisert, J.: Locality of dynamics in general harmonic quantum systems. In: Quantum information and many body quantum systems, Ericsson, M., Montangero, S. (eds.), CRM Series, no. 8. Pisa: Edizioni della Normale, 2008, pp. 51–72Google Scholar
  13. 13.
    Dagotto E., Rice T.M.: Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials. Science 271, 618–623 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455–534 (1996)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Datta N., Fernández R., Fröhlich J., Rey-Bellet L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 69, 752–820 (1996)MathSciNetMATHGoogle Scholar
  16. 16.
    Dziubańsky J., Hernández E.: Band-limited wavelets with subexponential decay. Canad. Math. Bull. 41, 398–403 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fannes M., Nachtergaele B., Werner R.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys. 144, 443–490 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Hamza E., Michalakis S., Nachtergaele B., Sims R.: Approximating the ground state of gapped quantum spin systems. J. Math. Phys. 50, 095213 (2009)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Hastings M.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Hastings M.: An area law for one dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hastings, M.B.: Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance. http://arxiv/org/abs/1001.5280v2 [math-ph], 2010
  22. 22.
    Hastings M., Koma T.: Spectral Gap and Exponential Decay of Correlations. Commun. Math. Phys. 265, 781–804 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Hastings, M., Michalakis, S.: Quantization of Hall conductance for interacting electrons without averaging assumptions. http://arxiv/org/abs/0911.4706v1 [math-ph], 2009
  24. 24.
    Hastings M., Wen X.: Quasi-adiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B. 72, 045141 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Ingham A.E.: A note on Fourier Transforms. J. London Math. Soc. 9, 29–32 (1934)CrossRefGoogle Scholar
  26. 26.
    Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1980)MATHGoogle Scholar
  27. 27.
    Kennedy T.: Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys. 100, 447–462 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Kennedy T., Tasaki H.: Hidden Z 2 × Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev. B 45, 304–307 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Laughlin R.B.: The Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Lieb E.H., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Matsui T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys. 126, 453–467 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Nachtergaele B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124, 1–13 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. Commun. Math. Phys. 286, 1073–1098 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Nachtergaele B., Schlein B., Sims R., Starr S., Zagrebnov V.: On the existence of the dynamics for anharmonic quantum oscillator systems. Rev. Math. Phys. 22, 207–231 (2010)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Nachtergaele B., Sims R.: Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119–130 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Nachtergaele B., Sims R.: A multi-dimensional Lieb-Schultz-Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Nachtergaele, B., Sims, R.: Locality Estimates for Quantum Spin Systems. In: Sidoravicius, V. (ed.), New Trends in Mathematical Physics. Selected contributions of the XV th International Congress on Mathematical Physics, Berlin-Heidelberg-New York: Springer Verlag, 2009, pp. 591–614Google Scholar
  42. 42.
    Nachtergaele, B., Sims, R.: Lieb-Robinson Bounds in Quantum Many-Body Physics. In: Sims, R., Ueltschi, D. (eds), Entropy and the Quantum, Contemporary Mathematics, Volume 529, Providence, RI: Amer. Math. Soc., 2010, pp. 141–176Google Scholar
  43. 43.
    Nachtergaele, B., Scholz, V.B., Werner, R.F.: Local approximation of observables and commutator bounds. http://arxiv/org/abs/1103.5663v1 [math-ph], 2011
  44. 44.
    Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. J. Phys. A. 75, 032321 (2007)Google Scholar
  45. 45.
    Prémont-Schwarz I., Hamma A., Klich I., Markopoulou-Kalamara F.: Lieb-Robinson bounds for commutator-bounded operators. Phys. Rev. A. 81, 040102 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Prémont-Schwarz I., Hnybida J.: Lieb-Robinson bounds with dependence on interaction strengths. Phys. Rev. A. 81, 062107 (2010)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Methods of Modern Mathematical Physics, Vol. 2, London: Academic Press 1975Google Scholar
  48. 48.
    Sachdev, S.: Quantum phase transitions. Cambridge University Press 2000Google Scholar
  49. 49.
    Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using MPS and PEPS. Phys. Rev. B. 84, 165139 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Schuch N., Harrison S.K., Osborne T.J., Eisert J.: Information propagation for interacting particle systems. Phys. Rev. A. 84, 032309 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Tsui D.C., Stormer H.L., Gossard A.C.: Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    Yarotsky D.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Sven Bachmann
    • 1
  • Spyridon Michalakis
    • 2
  • Bruno Nachtergaele
    • 1
  • Robert Sims
    • 3
  1. 1.Department of MathematicsUniversity of California, DavisDavisUSA
  2. 2.Institute for Quantum InformationCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations