Communications in Mathematical Physics

, Volume 308, Issue 3, pp 641–701 | Cite as

Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains

Article

Abstract

The formation and propagation of singularities for the Boltzmann equation in bounded domains has been an important question in numerical studies as well as in theoretical studies. In this paper, we consider the nonlinear Boltzmann solution near Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We demonstrate that discontinuity is created at the non-convex part of the grazing boundary, and then it propagates only along the forward characteristics inside the domain before it hits on the boundary again.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, K.: Private communicationsGoogle Scholar
  2. 2.
    Arkeryd L., Cercignani C.: A global existence theorem for initial-boundary-value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Rat. Mech. Anal. 125, 271–287 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arlotti, L., Banasiak, J., Lods, B.: On general transport equations with abstract boundary conditions. The case of divergence free force field. Preprint 2009Google Scholar
  4. 4.
    Aoki K., Bardos C., Dogbe C., Golse F.: A note on the propagation of boundary induced discontinuities in kinetic theory. Math. Models Methods Appl. Sci. 11(9), 1581–1595 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aoki K., Takata S., Aikawa H., Golse F.: A rarefied gas flow caused by a discontinuous wall temperature. Phys. Fluids 13(9), 2645–2661 (2001)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Alexandre R., Villani C.: On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55(1), 30–70 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Boudin L., Desvillettes L.: On the singularities of the global small solutions of the full Boltzmann equation. Monatshefte Math. 131, 91–108 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bernis L., Desvillettes L.: Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete Contin. Dyn. Syst. 24(1), 13–33 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cercignani C.: Propagation phenomena in classical and relativistic rarefied gases. Transport Theory Statist. Phys. 29(3-5), 607–614 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Cercignani C.: On the initial-boundary value problem for the Boltzmann equation. Arch. Rat. Mech. Anal. 116, 307–315 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cercignani C.: The Boltzmann equation and its applications. Springer, New York (1988)MATHCrossRefGoogle Scholar
  12. 12.
    Cercignani C., Illner R., Pulvirenti M.: The mathematical theory of dilute gases. Springer, New York (1994)MATHGoogle Scholar
  13. 13.
    DiPerna R.J., Lions P.L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366 (1989)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Duan R., Li M.-R., Yang T.: Propagation of singularities in the solutions to the Boltzmann equation near equilibrium. Math. Models Methods Appl. Sci. 18(7), 1093–1114 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Glassey, R.: The Cauchy Problems in Kinetic Theory. Philadelphia: SIAM, 1996Google Scholar
  16. 16.
    Greenberg, W., van der Mee, C., Protopopescu, V.: Boundary value problems in abstract kinetic theory. Operator Theory: Advances and Applications, 23. Basel: Birkhauser Verlag, 1987Google Scholar
  17. 17.
    Gressman T., Strain R.: Global Classical Solutions of the Boltzmann Equation without Angular Cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Guiraud, J.-P.: An H theorem for a gas of rigid spheres in a bounded domain, Theories cinetiques classiques et relativistes. Paris: Centre Nat. Recherche Sci., 1975, pp. 29–58Google Scholar
  19. 19.
    Guo Y.: Singular solutions of the Vlasov-Maxwell system on a half line. Arch. Rat. Mech. Anal. 131(3), 241–304 (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Rat. Mech. Anal. 169(4), 305–353 (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Guo Y.: Decay and Continuity of Boltzmann Equation in Bounded Domains. Arch. Rat. Mech. Anal. 197(3), 713–809 (2010)MATHCrossRefGoogle Scholar
  22. 22.
    Grad, H.: Asymptotic theory of the Boltzmann equation. II. Rarefied gas dynamics. In: Proceedings of the 3rd international Symposium, (Paris, 1962), Lawmann, J.A. (ed.), New York: Academic Press, 1963, pp. 26–59Google Scholar
  23. 23.
    Hamdache K.: Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions. Arch. Rat. Mech. Anal. 119(4), 309–353 (1992)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hörmander, L.: The analysis of linear partial differential operators. I-IV, Berlin: Springer-Verlag, 2005Google Scholar
  25. 25.
    Hwang H.-J.: Regularity for the Vlasov-Poisson system in a convex domain. SIAM J. Math. Anal. 36(1), 121–171 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hwang H.-J., Velazquez J.: Global existence for the Vlasov-Poisson system in bounded domains. Arch. Rat. Mech. Anal. 195(3), 763–796 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kim, C.: Boltzmann equation with specular reflection in 2D domains, In preparation.Google Scholar
  28. 28.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, III. J. Math. Kyoto Univ. 34, no. 2, 391–427, 429–461, 539–584, (1994)Google Scholar
  29. 29.
    Maslova, N.: Nonlinear evolution equations. Kinetic approach. Rivers Edge, NJ: World Scientific Publishing Co., 1993Google Scholar
  30. 30.
    Maxwell, J.-C.: On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. Roy. Soc. London 170, Appendix 231–256 (1879)Google Scholar
  31. 31.
    Melrose R.B., Sjostrand J.: Singularities of boundary value problems I. Comm. Pure Appl. Math. 31(5), 593–617 (1978)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Mischler S.: On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 210(2), 447–466 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173(2), 169–212 (2004)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Boston, MA: Birkhauser Boston, Inc., 2007Google Scholar
  35. 35.
    Sone Y., Takata S.: Discontinuity of the velocity distribution function in a rarefied gas around a convex body and the S layer at the bottom of the Knudsen layer. Transport Theor. Stat. Phys. 21, 501–530 (1992)ADSMATHCrossRefGoogle Scholar
  36. 36.
    Takata S., Sone Y., Aoki K.: Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5, 716–737 (1993)ADSGoogle Scholar
  37. 37.
    Taylor M.: Reflection of singularities of solutions to systems of differential equations. Comm. Pure Appl. Math. 28(4), 457–478 (1975)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Ukai, S.: Solutions of the Boltzmann equation. Patterns and waves. Stud. Math. Appl., 18, Amsterdam: North-Holland, 1986, pp. 37–96Google Scholar
  39. 39.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics. Vol. I, Amsterdam: North-Holland, 2002, pp. 71–305Google Scholar
  40. 40.
    Voigt, J.: Functional analytic treatment of the initial boundary value problem for collisionless gases. Habilitationsschrift, Munchen, 1981 (http://www.math.tu-dresden.de/~voigt/vopubl/habilschr/habil80.pdf)
  41. 41.
    Wennberg B.: Regularity in the Boltzmann Equation and the Radon Transform. Commun. in P.D.E. 19, 2057–2074 (1994)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Wennberg B.: The geometry of binary collisions and generalized Radon transforms. Arch. Rat. Mech. Anal. 139(3), 291–302 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations