Skip to main content
Log in

Lagrange Structure and Dynamics for Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The compressible Navier-Stokes system (CNS) with density-dependent viscosity coefficients is considered in multi-dimension, the prototype of the system is the viscous Saint-Venat model for the motion of shallow water. A spherically symmetric weak solution to the free boundary value problem for CNS with stress free boundary condition and arbitrarily large data is shown to exist globally in time with the free boundary separating fluids and vacuum and propagating at finite speed as particle path, which is continuous away from the symmetry center. Detailed regularity and Lagrangian structure of this solution have been obtained. In particular, it is shown that the particle path is uniquely defined starting from any non-vacuum region away from the symmetry center, along which vacuum states shall not form in any finite time and the initial regularities of the solution is preserved. Starting from any non-vacuum point at a later-on time, a particle path is also uniquely defined backward in time, which either reaches at some initial non-vacuum point, or stops at a small middle time and connects continuously with vacuum. In addition, the free boundary is shown to expand outward at an algebraic rate in time, and the fluid density decays and tends to zero almost everywhere away from the symmetry center as the time grows up. This finally leads to the formation of vacuum state almost everywhere as the time goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch D., Desjardins B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  2. Bresch D., Desjardins B., Gérard-Varet D.: On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87, 227–235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bresch D., Desjardins B., Lin C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. PDEs 28(3-4), 843–868 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen G.-Q., Kratka M.: Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and freeboundary. Commun. PDEs 27, 907–943 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen P., Zhang T.: A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Commun. Pure Appl. Anal. 7, 987–1016 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83(2), 243–275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Danchin R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Ducomet B., Zlotnik A.: Viscous compressible barotropic symmetric flows with free boundary under general mass force. I. Uniform-in-time bounds and stabilization. Math. Methods Appl. Sci. 28(7), 827–863 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Gerbeau J.F., Perthame B.: Derivation of viscous Saint-Venant system for laminar shallow water, Numerical validation. Discrete Contin. Dyn. Syst. Ser. B1, 89–102 (2001)

    MathSciNet  Google Scholar 

  11. Guo Z.-H., Jiu Q.-S., Xin Z.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal. 39, 1402–1427 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Guo, Z.-H., Li, H.-L., Xin, Z.: Asymptotical behaviors of spherically symmetric isentropic compressible Navier-Stokes equations. Preprint 2010

  13. Hoff D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rat. Mech. Anal. 132(1), 1–14 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoff D., Santos M.: Lagrangian structure and propagation of singularities in multidimensional compressible flow. Arch. Rat. Mech. Anal. 188(3), 509–543 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoff D., Serre D.: The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Hoff D., Smoller J.: Non-formation of vacuum states for compressible Navier-Stokes equations. Commun. Math. Phys. 216(2), 255–276 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Hoff D., Tsyganov E.: Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multi-dimensional compressible flow. J. Diff. Eqs. 245, 3068–3094 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang X.-D., Xin Z.-P.: A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Science in China, Mathematics 53, 671–688 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Huang, X.-D., Li, J., Luo, Z., Xin, Z.-P.: Global existence and blowup behavior of smooth solutions to the 2-dimensional compressible flows with vacuum. Preprint 2010

  20. Huang, X.-D., Li, J., Xin, Z.-P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Preprint 2010

  21. Huang X.-D., Li J., Xin Z.-P.: Blow-up criterion for viscous baratropic flows with vacuum. Commun. Math. Phys. 301(1), 23–35 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Jang, H.: Local well-posedness of dynamics of viscous gaseous stars. http://arxiv.org/abs/0706.1605v1 [math.Ap], 2007

  23. Jang J., Masmoudi N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Comm. Pure Appl. Math. 62(10), 1327–1385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. http://arXiv.org/abs/1005.4441v1 [math.Ap], 2010

  25. Jiang S.: Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math. Nachr. 190, 169–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jiang S., Xin Z., Zhang P.: Global weak solutions to 1D compressible isentropy Navier-Stokes with density-dependent viscosity. Methods Appl. Anal. 12(3), 239–252 (2005)

    MathSciNet  Google Scholar 

  27. Jiang S., Zhang P.: Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Kazhikhov A.V., Shelukhin V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977)

    Article  MathSciNet  Google Scholar 

  29. Li H.-L., Li J., Xin Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Commun. Math. Phys. 281, 401–444 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Lian R., Guo Z.-H., Li H.-L.: Dynamical behavior of vacuum states for 1D compressible Navier-Stokes equations. J. Diff. Eqs. 248, 1915–1930 (2010)

    Article  MathSciNet  Google Scholar 

  31. Lions P.L.: Mathematical Topics in Fluid Dynamics 2, Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  32. Liu T.-P., Xin Z.P., Yang T.: Vacuum states of compressible flow. Dis. Cont. Dyn. Syst. 4, 1–32 (1998)

    MATH  MathSciNet  Google Scholar 

  33. Luo T., Xin Z., Yang T.: Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Marche F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Euro. J. Mech. B/Fluids 26, 49–63 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    MATH  MathSciNet  Google Scholar 

  36. Mellet A., Vasseur A.: On the isentropic compressible Navier-Stokes equation. Commun. PDEs 32(3), 431–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nagasawa T.: On the asymptotic behavior of the one-dimensional motion of the polytropic ideal gas with stress-free condition. Quart. Appl. Math. 46(4), 665–679 (1988)

    MATH  MathSciNet  Google Scholar 

  38. Nishida T.: Equations of fluid dynamics-free surface problems. Comm. Pure Appl. Math. 39, 221–238 (1986)

    Article  MathSciNet  Google Scholar 

  39. Okada M., Makino T.: Free boundary value problems for the equation of spherically symmetrical motion of viscous gas. Japan J. Appl. Math. 10, 219–235 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pedlosky J.: Geophysical Fluid Dynamics. 2nd edition. Springer, Berlin-Heidelberg-New York (1992)

    Google Scholar 

  41. Qin X., Yao Z.: Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity. J. Diff. Eqs. 244(8), 2041–2061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Salvi R. , Straškraba I.: Global existence for viscous compressible fluids and their behavior as t → ∞. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40, 17–51 (1993)

    MathSciNet  Google Scholar 

  43. Secchi P.: On the evolution equations of viscous gaseous stars. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18(2), 295–318 (1991)

    MATH  MathSciNet  Google Scholar 

  44. Secchi P., Valli A.: A free boundary problem for compressible viscous fluids. J. Reine Angew. Math. 341, 1–31 (1983)

    Article  MathSciNet  Google Scholar 

  45. Serrin J.: Mathematical principles of classical fluid mechanics. Handbuch der Physik, Vol. 8/1., pp. 125–263. Springer-Verlag, Berlin-Heidelberg-New York (1959)

    Google Scholar 

  46. Solonnikov, V.A., Tani, A.: Free boundary problem for a viscous compressible flow with a surface tension. Constantin Carathéodory: an international tribute, Vol. I, II. Teaneck, NJ: World Sci. Publ. 1991, pp. 1270–1303

  47. Solonnikov, V.A., Tani, A.: Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid. In: The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991), Lecture Notes in Math., 1530. Berlin: Springer, 1992, pp. 30–55

  48. Ströhmer G.: About the linear stability of the spherically symmetric solution for the equations of a barotropic viscous fluid under the influence of self-gravitation. J. Math. Fluid Mech. 8(1), 36–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tani A.: On the free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ. 21(4), 839–859 (1981)

    MATH  MathSciNet  Google Scholar 

  50. Vaigant V., Kazhikhov A.: On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. Siberian J. Math. 36, 1283–1316 (1995)

    MathSciNet  Google Scholar 

  51. Wang D.: On the global solution and interface behaviour of viscous compressible real flow with free boundaries. Nonlinearity 16(2), 719–733 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Wei M., Zhang T., Fang D.: Global behavior of spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients. SIAM J. Math. Anal. 40(3), 869–904 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Xin Z.P.: Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  Google Scholar 

  54. Xin Z., Yuan H.: Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations. J. Hyperbolic Diff. Eqs. 3, 403–442 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  55. Yang T., Zhu C.J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Zadrzyńska E.: Evolution free boundary problem for equations of viscous compressible heat-conducting capillary fluids. Math. Meths. Appl. Sci. 24(10), 713–743 (2001)

    Article  MATH  Google Scholar 

  57. Zadrzyńska E., Zajaczkowski W.M.: On local motion of a general compressible viscous heat conducting fluid bounded by a free surface. Ann. Polon. Math. 59(2), 133–170 (1994)

    MATH  MathSciNet  Google Scholar 

  58. Zadrzyńska E., Zajaczkowski W.M.: On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting capillary fluid. J. Appl. Anal. 2(2), 125–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  59. Zajaczkowski W.M.: On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface. Dissert. Math. 324, 101 (1993)

    MathSciNet  Google Scholar 

  60. Zajaczkowski W.M.: On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface. SIAM J. Math. Anal. 25(1), 1–84 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  61. Zajaczkowski W.M.: Existence of local solutions for free boundary problems for viscous compressible barotropic fluids. Ann. Polon. Math. 60(3), 255–287 (1995)

    MATH  MathSciNet  Google Scholar 

  62. Zhang T., Fang D.: Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients Arch. Rat. Mech. Anal. 191(2), 195–243 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  63. Zlotnik A., Ducoment B.: The stabilization rate and stability of viscous compressible barotropic symmetric flows with a free boundary for a general mass force. Sb. Math. 196(11-12), 1745–1799 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Liang Li.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Li, HL. & Xin, Z. Lagrange Structure and Dynamics for Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations. Commun. Math. Phys. 309, 371–412 (2012). https://doi.org/10.1007/s00220-011-1334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1334-6

Keywords

Navigation