Faithful Squashed Entanglement

  • Fernando G. S. L. Brandão
  • Matthias Christandl
  • Jon Yard
Article

Abstract

Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled.

We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing.

The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence.

The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.

References

  1. 1.
    Ohya M., Petz D.: Quantum Entropy and Its Use. Springer-Verlag, Berlin-Heidelberg-New York (2004)Google Scholar
  2. 2.
    Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Hayden P., Jozsa R., Petz D., Winter A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246, 359 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Ibinson B., Linden N., Winter A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277, 289 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Christandl M., Winter A.: “Squashed entanglement”: an additive entanglement measure. J. Math. Phys. 45, 829 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Tucci, R.R.: Quantum entanglement and conditional information transmission. http://arxiv.org/abs/quant-ph/9909041v2, 1999
  8. 8.
    Tucci, R.R.: Entanglement of distillation and conditional mutual information. http://arxiv.org/abs/quant-ph/0202144v2 2002
  9. 9.
    Christandl, M.: The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography. PhD thesis, Cambridge University, 2006Google Scholar
  10. 10.
    Christandl M., Schuch N., Winter A.: Highly entangled states with almost no secrecy. Phys. Rev. Lett. 104, 240405 (2010)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Koashi M., Winter A.: Monogamy of entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Matthews W., Wehner S., Winter A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Rains E.M.: Rigorous treatment of distillable entanglement. Phys. Rev. A 60, 173 (1999)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Devetak I., Winter A.: Distillation of secret key and entanglement from quantum states. Proc. Roy. Soc. Lond. Ser. A 461, 207 (2004)MathSciNetADSGoogle Scholar
  21. 21.
    Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Hayden P., Horodecki M., Terhal B.M.: The asymptotic entanglement cost of preparing a quantum state. J. Phys. A 34, 6891 (2001)MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)MathSciNetADSCrossRefMATHGoogle Scholar
  24. 24.
    Vedral V., Plenio M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Vidal G., Werner R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Yang D., Horodecki M., Horodecki R., Synak-Radtke B.: Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Brandão F.G.S.L., Plenio M.B.: A generalization of quantum Stein’s lemma. Commun. Math. Phys. 295, 791 (2010)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Plenio M.B.: Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A: Math. Gen. 37, L55 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    Donald M.J., Horodecki M.: Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257 (1999)MathSciNetADSCrossRefMATHGoogle Scholar
  31. 31.
    Donald M.J., Horodecki M., Rudolph O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  32. 32.
    Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246, 453 (2003)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Physics 5, 255 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Maurer U.M., Wolf S.: Unconditionally secure key agreement and the intrinsic conditional information. IEEE Trans. Inform. Theory 2, 499 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Christandl, M., Renner, R., Wolf, S.: A property of the intrinsic mutual information. In: Proc. 2003 IEEE Int. Symp. Inform. Theory, 2003, p. 258Google Scholar
  37. 37.
    Devetak I., Yard J.: Exact cost of redistributing quantum states. Phys. Rev. Lett 100, 230501 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Yard J., Devetak I.: Optimal quantum source coding with quantum information at the encoder and decoder. IEEE Trans. Inform. Theory 55, 5339 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Oppenheim, J.: A paradigm for entanglement theory based on quantum communication. http://arxiv.org/abs/0801.0458v1 [quantph], 2008
  40. 40.
    Hudson R.L., Moody G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrschein. verw. Geb. 33, 343 (1976)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Størmer E.: Symmetric states of infinite tensor products of C*-algebras. J. Funct. Anal. 3, 48 (1969)CrossRefGoogle Scholar
  42. 42.
    Raggio G.A., Werner R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta. 62, 980 (1989)MathSciNetGoogle Scholar
  43. 43.
    Werner R.F.: An application of Bell’s inequalities to a quantum state extension problem. Lett. Math. Phys. 17, 359 (1989)MathSciNetADSCrossRefMATHGoogle Scholar
  44. 44.
    König R., Renner R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 122108 (2005)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Christandl M., König R., Mitchison G., Renner R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473 (2007)ADSCrossRefMATHGoogle Scholar
  46. 46.
    Virmani S., Plenio M.B.: Construction of extremal local positive operator-valued measures under symmetry. Phys. Rev. A 67, 062308 (2003)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    DiVincenzo D.P., Leung D.W., Terhal B.M.: Quantum data hiding. IEEE Trans. Inform. Theory 48, 580 (2002)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    DiVincenzo D.P., Hayden P., Terhal B.M.: Hiding quantum data. Found. Phys. 33, 1629 (2003)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Eggeling T., Werner R.F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89, 097905 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  51. 51.
    Doherty A.C., Parrilo P.A., Spedalieri F.M.: A complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Brandão F.G.S.L., Vianna R.O.: Separable multipartite mixed states - operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93, 220503 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    Ioannou L.M.: Computational complexity of the quantum separability problem. Quant. Inform. Comp. 7, 335 (2007)MathSciNetMATHGoogle Scholar
  54. 54.
    Navascues M., Owari M., Plenio M.B.: A complete criterion for separability detection. Phys. Rev. Lett. 103, 160404 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Gurvits L.: Classical complexity and quantum entanglement. J. Comp. Sys. Sci 69, 448 (2004)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Gharibian S.: Strong NP-hardness of the quantum separability problem. Quant. Inform. Comp. 10, 343 (2010)MathSciNetMATHGoogle Scholar
  57. 57.
    Beigi S.: NP vs QMA log(2). Quant. Inform. Comp. 10, 141 (2010)MathSciNetMATHGoogle Scholar
  58. 58.
    Harrow, A., Montanaro, A.: An efficient test for product states, with applications to quantum Merlin-Arthur games. In: Proc. Found. Comp. Sci. (FOCS), 2010, p. 633Google Scholar
  59. 59.
    Brandão, F.G.S.L., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proc. ACM Symp. on Theoretical Computer Science (STOC), 2011, p. 343Google Scholar
  60. 60.
    Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and System Science. Berlin-Heidelberg-New York: Springer, 2009Google Scholar
  61. 61.
    Marriott C., Watrous J.: Quantum Arthur-Merlin games. Computational Complexity 14, 122 (2005)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Beigi S., Shor P.W., Watrous J.: Quantum interactive proofs with short messages. Theory of Computing 7, 201 (2011)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Aaronson S., Beigi S., Drucker A., Fefferman B., Shor P.: The power of unentanglement. Theory of Computing 5, 1 (2009)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur? In: Lecture Notes in Computer Science, Volume 2906, Berlin-Heidelberg-Newyork: Springer, 2003, p. 189Google Scholar
  65. 65.
    Brandão, F.G.S.L.: Entanglement Theory and the Quantum Simulation of Many-Body Physics. PhD thesis, Imperial College, 2008Google Scholar
  66. 66.
    Matsumoto, K.: Can entanglement efficiently be weakened by symmetrization? http://arxiv/org/abs/quant-ph/0511240v3, 2005
  67. 67.
    Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Locking entanglement measures with a single qubit. Phys. Rev. Lett. 94, 200501 (2005)MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Piani M.: Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett. 103, 160504 (2009)MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Hiai F., Petz D.: The proper formula for the relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  70. 70.
    Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in the quantum hypothesis testing. IEEE Trans. Inform. Theory 46, 2428 (2000)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Gühne O., Toth G.: Entanglement detection. Phys. Rep. 474, 1 (2009)MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Brandão F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    Brandão F.G.S.L.: Entanglement activation and the robustness of quantum correlations. Phys. Rev. A 76, 030301(R) (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Synak-Radtke B., Horodecki M.: On asymptotic continuity of functions of quantum states. J. Phys. A: Math. Gen. 39, 423 (2006)MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    Berta, M., Christandl, M., Renner, R.: A conceptually simple proof of the quantum reverse Shannon theorem. In: Lecture Notes in Computer Science, Volume 6519, Berlin-Heidelberg-New York: Springer, 2011, p. 131Google Scholar
  76. 76.
    Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys., 2011. to appear, http://arxiv.org/abs/0912.3805v2
  77. 77.
    Brandão F.G.S.L., Plenio M.B.: Entanglement theory and the second law of thermodynamics. Nature Physics 4, 873 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    Brandão F.G.S.L., Plenio M.B.: A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys. 295, 829 (2010)ADSCrossRefMATHGoogle Scholar
  79. 79.
    Brandão F.G.S.L., Datta N.: One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. Inform. Theory 57, 1754 (2011)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Brandão, F.G.S.L.: A reversible framework for resource theories. In preparation, 2011Google Scholar
  81. 81.
    Winter A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inform. Theory 45, 2481 (1999)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Ogawa, T., Nagaoka, H.: A new proof of the channel coding theorem via hypothesis testing in quantum information theory. In: Proc. 2002 IEEE Int. Symp. Inform. Theory 2002, p. 73Google Scholar
  83. 83.
    Renner R.: Symmetry implies independence. Nature Physics 3, 645 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    Jain, R.: Distinguishing sets of quantum states. http://arxiv.org/abs/quant-ph/0506205v1, 2005
  85. 85.
    Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Review 38, 49 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fernando G. S. L. Brandão
    • 1
  • Matthias Christandl
    • 2
  • Jon Yard
    • 3
  1. 1.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  3. 3.Center for Nonlinear Studies (CNLS), Computer, Computational and Statistical Sciences (CCS-3), Los Alamos National LaboratoryLos lamosUSA

Personalised recommendations